Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from networks.encoder import Encoder | |
from networks.styledecoder import Synthesis | |
# This part is modified from: https://github.com/wyhsirius/LIA | |
class LIA_Model(torch.nn.Module): | |
def __init__(self, size = 256, style_dim = 512, motion_dim = 20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1], fusion_type=''): | |
super().__init__() | |
self.enc = Encoder(size, style_dim, motion_dim, fusion_type) | |
self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier) | |
def get_start_direction_code(self, x_start, x_target, x_face, x_aug): | |
enc_dic = self.enc(x_start, x_target, x_face, x_aug) | |
wa, alpha, feats = enc_dic['h_source'], enc_dic['h_motion'], enc_dic['feats'] | |
return wa, alpha, feats | |
def render(self, start, direction, feats): | |
return self.dec(start, direction, feats) | |
def load_lightning_model(self, lia_pretrained_model_path): | |
selfState = self.state_dict() | |
state = torch.load(lia_pretrained_model_path, map_location='cpu') | |
for name, param in state.items(): | |
origName = name; | |
if name not in selfState: | |
name = name.replace("lia.", "") | |
if name not in selfState: | |
print("%s is not in the model."%origName) | |
# You can ignore those errors as some parameters are only used for training | |
continue | |
if selfState[name].size() != state[origName].size(): | |
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origName, selfState[name].size(), state[origName].size())) | |
continue | |
selfState[name].copy_(param) | |