Anitalker / experiment.py
Delik's picture
Upload 32 files
f1ea451 verified
import copy
import os
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import *
from torch.cuda import amp
from torch.optim.optimizer import Optimizer
from torch.utils.data.dataset import TensorDataset
from model.seq2seq import DiffusionPredictor
from config import *
from dist_utils import *
from renderer import *
# This part is modified from: https://github.com/phizaz/diffae/blob/master/experiment.py
class LitModel(pl.LightningModule):
def __init__(self, conf: TrainConfig):
super().__init__()
assert conf.train_mode != TrainMode.manipulate
if conf.seed is not None:
pl.seed_everything(conf.seed)
self.save_hyperparameters(conf.as_dict_jsonable())
self.conf = conf
self.model = DiffusionPredictor(conf)
self.ema_model = copy.deepcopy(self.model)
self.ema_model.requires_grad_(False)
self.ema_model.eval()
self.sampler = conf.make_diffusion_conf().make_sampler()
self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()
# this is shared for both model and latent
self.T_sampler = conf.make_T_sampler()
if conf.train_mode.use_latent_net():
self.latent_sampler = conf.make_latent_diffusion_conf(
).make_sampler()
self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
).make_sampler()
else:
self.latent_sampler = None
self.eval_latent_sampler = None
# initial variables for consistent sampling
self.register_buffer(
'x_T',
torch.randn(conf.sample_size, 3, conf.img_size, conf.img_size))
def render(self, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, step_T, control_flag):
if step_T is None:
sampler = self.eval_sampler
else:
sampler = self.conf._make_diffusion_conf(step_T).make_sampler()
pred_img = render_condition(self.conf,
self.ema_model,
sampler, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, control_flag)
return pred_img
def forward(self, noise=None, x_start=None, ema_model: bool = False):
with amp.autocast(False):
if not self.disable_ema:
model = self.ema_model
else:
model = self.model
gen = self.eval_sampler.sample(model=model,
noise=noise,
x_start=x_start)
return gen
def setup(self, stage=None) -> None:
"""
make datasets & seeding each worker separately
"""
##############################################
# NEED TO SET THE SEED SEPARATELY HERE
if self.conf.seed is not None:
seed = self.conf.seed * get_world_size() + self.global_rank
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
print('local seed:', seed)
##############################################
self.train_data = self.conf.make_dataset()
print('train data:', len(self.train_data))
self.val_data = self.train_data
print('val data:', len(self.val_data))
def _train_dataloader(self, drop_last=True):
"""
really make the dataloader
"""
# make sure to use the fraction of batch size
# the batch size is global!
conf = self.conf.clone()
conf.batch_size = self.batch_size
dataloader = conf.make_loader(self.train_data,
shuffle=True,
drop_last=drop_last)
return dataloader
def train_dataloader(self):
"""
return the dataloader, if diffusion mode => return image dataset
if latent mode => return the inferred latent dataset
"""
print('on train dataloader start ...')
if self.conf.train_mode.require_dataset_infer():
if self.conds is None:
# usually we load self.conds from a file
# so we do not need to do this again!
self.conds = self.infer_whole_dataset()
# need to use float32! unless the mean & std will be off!
# (1, c)
self.conds_mean.data = self.conds.float().mean(dim=0,
keepdim=True)
self.conds_std.data = self.conds.float().std(dim=0,
keepdim=True)
print('mean:', self.conds_mean.mean(), 'std:',
self.conds_std.mean())
# return the dataset with pre-calculated conds
conf = self.conf.clone()
conf.batch_size = self.batch_size
data = TensorDataset(self.conds)
return conf.make_loader(data, shuffle=True)
else:
return self._train_dataloader()
@property
def batch_size(self):
"""
local batch size for each worker
"""
ws = get_world_size()
assert self.conf.batch_size % ws == 0
return self.conf.batch_size // ws
@property
def num_samples(self):
"""
(global) batch size * iterations
"""
# batch size here is global!
# global_step already takes into account the accum batches
return self.global_step * self.conf.batch_size_effective
def is_last_accum(self, batch_idx):
"""
is it the last gradient accumulation loop?
used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
"""
return (batch_idx + 1) % self.conf.accum_batches == 0
def training_step(self, batch, batch_idx):
"""
given an input, calculate the loss function
no optimization at this stage.
"""
with amp.autocast(False):
motion_start = batch['motion_start'] # torch.Size([B, 512])
motion_direction = batch['motion_direction'] # torch.Size([B, 125, 20])
audio_feats = batch['audio_feats'].float() # torch.Size([B, 25, 250, 1024])
face_location = batch['face_location'].float() # torch.Size([B, 125])
face_scale = batch['face_scale'].float() # torch.Size([B, 125, 1])
yaw_pitch_roll = batch['yaw_pitch_roll'].float() # torch.Size([B, 125, 3])
motion_direction_start = batch['motion_direction_start'].float() # torch.Size([B, 20])
# import pdb; pdb.set_trace()
if self.conf.train_mode == TrainMode.diffusion:
"""
main training mode!!!
"""
# with numpy seed we have the problem that the sample t's are related!
t, weight = self.T_sampler.sample(len(motion_start), motion_start.device)
losses = self.sampler.training_losses(model=self.model,
motion_direction_start=motion_direction_start,
motion_target=motion_direction,
motion_start=motion_start,
audio_feats=audio_feats,
face_location=face_location,
face_scale=face_scale,
yaw_pitch_roll=yaw_pitch_roll,
t=t)
else:
raise NotImplementedError()
loss = losses['loss'].mean()
# divide by accum batches to make the accumulated gradient exact!
for key in losses.keys():
losses[key] = self.all_gather(losses[key]).mean()
if self.global_rank == 0:
self.logger.experiment.add_scalar('loss', losses['loss'],
self.num_samples)
for key in losses:
self.logger.experiment.add_scalar(
f'loss/{key}', losses[key], self.num_samples)
return {'loss': loss}
def on_train_batch_end(self, outputs, batch, batch_idx: int,
dataloader_idx: int) -> None:
"""
after each training step ...
"""
if self.is_last_accum(batch_idx):
if self.conf.train_mode == TrainMode.latent_diffusion:
# it trains only the latent hence change only the latent
ema(self.model.latent_net, self.ema_model.latent_net,
self.conf.ema_decay)
else:
ema(self.model, self.ema_model, self.conf.ema_decay)
def on_before_optimizer_step(self, optimizer: Optimizer,
optimizer_idx: int) -> None:
# fix the fp16 + clip grad norm problem with pytorch lightinng
# this is the currently correct way to do it
if self.conf.grad_clip > 0:
# from trainer.params_grads import grads_norm, iter_opt_params
params = [
p for group in optimizer.param_groups for p in group['params']
]
torch.nn.utils.clip_grad_norm_(params,
max_norm=self.conf.grad_clip)
def configure_optimizers(self):
out = {}
if self.conf.optimizer == OptimizerType.adam:
optim = torch.optim.Adam(self.model.parameters(),
lr=self.conf.lr,
weight_decay=self.conf.weight_decay)
elif self.conf.optimizer == OptimizerType.adamw:
optim = torch.optim.AdamW(self.model.parameters(),
lr=self.conf.lr,
weight_decay=self.conf.weight_decay)
else:
raise NotImplementedError()
out['optimizer'] = optim
if self.conf.warmup > 0:
sched = torch.optim.lr_scheduler.LambdaLR(optim,
lr_lambda=WarmupLR(
self.conf.warmup))
out['lr_scheduler'] = {
'scheduler': sched,
'interval': 'step',
}
return out
def split_tensor(self, x):
"""
extract the tensor for a corresponding "worker" in the batch dimension
Args:
x: (n, c)
Returns: x: (n_local, c)
"""
n = len(x)
rank = self.global_rank
world_size = get_world_size()
# print(f'rank: {rank}/{world_size}')
per_rank = n // world_size
return x[rank * per_rank:(rank + 1) * per_rank]
def ema(source, target, decay):
source_dict = source.state_dict()
target_dict = target.state_dict()
for key in source_dict.keys():
target_dict[key].data.copy_(target_dict[key].data * decay +
source_dict[key].data * (1 - decay))
class WarmupLR:
def __init__(self, warmup) -> None:
self.warmup = warmup
def __call__(self, step):
return min(step, self.warmup) / self.warmup
def is_time(num_samples, every, step_size):
closest = (num_samples // every) * every
return num_samples - closest < step_size
def train(conf: TrainConfig, gpus, nodes=1, mode: str = 'train'):
print('conf:', conf.name)
# assert not (conf.fp16 and conf.grad_clip > 0
# ), 'pytorch lightning has bug with amp + gradient clipping'
model = LitModel(conf)
if not os.path.exists(conf.logdir):
os.makedirs(conf.logdir)
checkpoint = ModelCheckpoint(dirpath=f'{conf.logdir}',
save_last=True,
save_top_k=-1,
every_n_epochs=10)
checkpoint_path = f'{conf.logdir}/last.ckpt'
print('ckpt path:', checkpoint_path)
if os.path.exists(checkpoint_path):
resume = checkpoint_path
print('resume!')
else:
if conf.continue_from is not None:
# continue from a checkpoint
resume = conf.continue_from.pathcd
else:
resume = None
tb_logger = pl_loggers.TensorBoardLogger(save_dir=conf.logdir,
name=None,
version='')
# from pytorch_lightning.
plugins = []
if len(gpus) == 1 and nodes == 1:
accelerator = None
else:
accelerator = 'ddp'
from pytorch_lightning.plugins import DDPPlugin
# important for working with gradient checkpoint
plugins.append(DDPPlugin(find_unused_parameters=True))
trainer = pl.Trainer(
max_steps=conf.total_samples // conf.batch_size_effective,
resume_from_checkpoint=resume,
gpus=gpus,
num_nodes=nodes,
accelerator=accelerator,
precision=16 if conf.fp16 else 32,
callbacks=[
checkpoint,
LearningRateMonitor(),
],
# clip in the model instead
# gradient_clip_val=conf.grad_clip,
replace_sampler_ddp=True,
logger=tb_logger,
accumulate_grad_batches=conf.accum_batches,
plugins=plugins,
)
trainer.fit(model)