Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
from torch.nn import functional as F | |
from torch import nn | |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
return F.leaky_relu(input + bias, negative_slope) * scale | |
class FusedLeakyReLU(nn.Module): | |
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): | |
super().__init__() | |
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) | |
self.negative_slope = negative_slope | |
self.scale = scale | |
def forward(self, input): | |
# print("FusedLeakyReLU: ", input.abs().mean()) | |
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
# print("FusedLeakyReLU: ", out.abs().mean()) | |
return out | |
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): | |
_, minor, in_h, in_w = input.shape | |
kernel_h, kernel_w = kernel.shape | |
out = input.view(-1, minor, in_h, 1, in_w, 1) | |
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) | |
out = out.view(-1, minor, in_h * up_y, in_w * up_x) | |
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] | |
# out = out.permute(0, 3, 1, 2) | |
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) | |
# out = out.permute(0, 2, 3, 1) | |
return out[:, :, ::down_y, ::down_x] | |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer('kernel', kernel) | |
self.pad = pad | |
def forward(self, input): | |
return upfirdn2d(input, self.kernel, pad=self.pad) | |
class ScaledLeakyReLU(nn.Module): | |
def __init__(self, negative_slope=0.2): | |
super().__init__() | |
self.negative_slope = negative_slope | |
def forward(self, input): | |
return F.leaky_relu(input, negative_slope=self.negative_slope) | |
class EqualConv2d(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, | |
padding=self.padding, ) | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class EqualLinear(nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
else: | |
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
bias=bias and not activate)) | |
if activate: | |
if bias: | |
layers.append(FusedLeakyReLU(out_channel)) | |
else: | |
layers.append(ScaledLeakyReLU(0.2)) | |
super().__init__(*layers) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class Discriminator(nn.Module): | |
def __init__(self, size, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.size = size | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
} | |
convs = [ConvLayer(3, channels[size], 1)] | |
log_size = int(math.log(size, 2)) | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
convs.append(ResBlock(in_channel, out_channel, blur_kernel)) | |
in_channel = out_channel | |
self.convs = nn.Sequential(*convs) | |
self.stddev_group = 4 | |
self.stddev_feat = 1 | |
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) | |
self.final_linear = nn.Sequential( | |
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), | |
EqualLinear(channels[4], 1), | |
) | |
def forward(self, input): | |
out = self.convs(input) | |
batch, channel, height, width = out.shape | |
group = min(batch, self.stddev_group) | |
stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width) | |
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
stddev = stddev.repeat(group, 1, height, width) | |
out = torch.cat([out, stddev], 1) | |
out = self.final_conv(out) | |
out = out.view(batch, -1) | |
out = self.final_linear(out) | |
return out | |