OCR_Application / app.py
Divyansh12's picture
Update app.py
b5ef879 verified
raw
history blame
3.68 kB
from transformers import AutoModel, AutoTokenizer
import streamlit as st
from PIL import Image
import re
import os
import uuid
# Load the model and tokenizer only once
if "model" not in st.session_state or "tokenizer" not in st.session_state:
@st.cache_resource
def load_model(model_name):
if model_name == "OCR for English or Hindi (CPU)":
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval()
elif model_name == "OCR for English (GPU)":
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().to('cuda')
return model, tokenizer
# Load and store in session state
model_option = st.selectbox("Select Model", ["OCR for English or Hindi (CPU)", "OCR for English (GPU)"])
model, tokenizer = load_model(model_option)
st.session_state["model"] = model
st.session_state["tokenizer"] = tokenizer
else:
model = st.session_state["model"]
tokenizer = st.session_state["tokenizer"]
# Function to run the GOT model for multilingual OCR
def run_ocr(image, model, tokenizer):
unique_id = str(uuid.uuid4())
image_path = f"{unique_id}.png"
# Save image to disk
image.save(image_path)
try:
# Use the model to extract text from the image
res = model.chat(tokenizer, image_path, ocr_type='ocr')
if isinstance(res, str):
return res
else:
return str(res)
except Exception as e:
return f"Error: {str(e)}"
finally:
# Clean up the saved image
if os.path.exists(image_path):
os.remove(image_path)
# Function to highlight keyword in text
def highlight_text(text, search_term):
if not search_term:
return text
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
# Streamlit App
st.title("GOT-OCR Multilingual Demo")
st.write("Upload an image for OCR")
# Upload image
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button("Run OCR"):
with st.spinner("Processing..."):
# Run OCR and store the result in session state
result_text = run_ocr(image, model, tokenizer)
if "Error" not in result_text:
st.session_state["extracted_text"] = result_text # Store the result in session state
else:
st.error(result_text)
# Display the extracted text if it exists in session state
if "extracted_text" in st.session_state:
extracted_text = st.session_state["extracted_text"]
st.subheader("Extracted Text:")
st.text(extracted_text) # Display the raw extracted text
# Keyword input for search
search_term = st.text_input("Enter a word or phrase to highlight:")
# Highlight keyword in the extracted text
if search_term:
highlighted_text = highlight_text(extracted_text, search_term)
# Display the highlighted text using markdown
st.markdown(highlighted_text, unsafe_allow_html=True)