Divyansh12 commited on
Commit
3d71449
·
verified ·
1 Parent(s): f604f09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -2,80 +2,80 @@ import os
2
  import streamlit as st
3
  from transformers import AutoModel, AutoTokenizer
4
  from PIL import Image
5
- import base64
6
  import uuid
7
- import time
8
- from pathlib import Path
9
 
10
- # Define a function to load the model
 
11
  def load_model(model_name):
12
- if model_name == "GOT_CPU":
13
  tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
14
  model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
15
- model = model.eval() # Load model on CPU
16
- elif model_name == "GOT_GPU":
17
  tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
18
  model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
19
- model = model.eval().cuda() # Load model on GPU
20
  return tokenizer, model
21
 
22
- # Define folders for uploads and results
23
- UPLOAD_FOLDER = "./uploads"
24
- RESULTS_FOLDER = "./results"
25
-
26
- for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
27
- if not os.path.exists(folder):
28
- os.makedirs(folder)
29
-
30
- # Function to run the GOT model for plain text OCR
31
  def run_GOT(image, tokenizer, model):
32
  unique_id = str(uuid.uuid4())
33
- image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
34
 
35
  image.save(image_path)
36
 
37
  try:
38
- res = model.chat(tokenizer, image_path, ocr_type='ocr') # Only using plain text OCR
 
39
  return res
40
  except Exception as e:
41
  return f"Error: {str(e)}"
42
  finally:
 
43
  if os.path.exists(image_path):
44
  os.remove(image_path)
45
 
46
- # Function to clean up old files
47
- def cleanup_old_files():
48
- current_time = time.time()
49
- for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
50
- for file_path in Path(folder).glob('*'):
51
- if current_time - file_path.stat().st_mtime > 3600: # 1 hour
52
- file_path.unlink()
53
 
54
  # Streamlit App
55
- st.set_page_config(page_title="GOT-OCR-2.0 Demo", layout="wide")
56
 
57
- uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
 
58
 
59
- # Create two columns for layout
60
- col1, col2 = st.columns(2)
61
 
62
- # Model selection
63
- model_option = st.selectbox("Select Model", ["GOT_CPU", "GOT_GPU"])
 
64
 
65
  if uploaded_image:
66
  image = Image.open(uploaded_image)
67
 
68
- with col1:
69
  st.image(image, caption='Uploaded Image', use_column_width=True)
70
-
71
- with col2:
72
- if st.button("Run Plain Text OCR"):
73
  with st.spinner("Processing..."):
74
- # Load the selected model
75
  tokenizer, model = load_model(model_option)
76
  result_text = run_GOT(image, tokenizer, model)
77
- st.text_area("GOT Output", result_text, height=200)
78
-
79
- # Cleanup old files
80
- cleanup_old_files()
81
-
 
 
 
 
 
 
 
 
2
  import streamlit as st
3
  from transformers import AutoModel, AutoTokenizer
4
  from PIL import Image
 
5
  import uuid
 
 
6
 
7
+ # Cache the model loading function
8
+ @st.cache_resource
9
  def load_model(model_name):
10
+ if model_name == "OCR for english or hindi (runs on CPU)":
11
  tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
12
  model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
13
+ model.eval() # Load model on CPU
14
+ elif model_name == "OCR for english (runs on GPU)":
15
  tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
16
  model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
17
+ model.eval().cuda() # Load model on GPU
18
  return tokenizer, model
19
 
20
+ # Function to run the GOT model for multilingual OCR
 
 
 
 
 
 
 
 
21
  def run_GOT(image, tokenizer, model):
22
  unique_id = str(uuid.uuid4())
23
+ image_path = f"{unique_id}.png"
24
 
25
  image.save(image_path)
26
 
27
  try:
28
+ # Use the model to extract text
29
+ res = model.chat(tokenizer, image_path, ocr_type='ocr') # Extract plain text
30
  return res
31
  except Exception as e:
32
  return f"Error: {str(e)}"
33
  finally:
34
+ # Clean up the saved image
35
  if os.path.exists(image_path):
36
  os.remove(image_path)
37
 
38
+ # Function to highlight keyword in text
39
+ def highlight_keyword(text, keyword):
40
+ if keyword:
41
+ highlighted_text = text.replace(keyword, f"<mark>{keyword}</mark>")
42
+ return highlighted_text
43
+ return text
 
44
 
45
  # Streamlit App
46
+ st.set_page_config(page_title="GOT-OCR Multilingual Demo", layout="wide")
47
 
48
+ # Creating two columns
49
+ left_col, right_col = st.columns(2)
50
 
51
+ with left_col:
52
+ uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
53
 
54
+ with right_col:
55
+ # Model selection in the right column
56
+ model_option = st.selectbox("Select Model", ["OCR for english or hindi (runs on CPU)", "OCR for english (runs on GPU)"])
57
 
58
  if uploaded_image:
59
  image = Image.open(uploaded_image)
60
 
61
+ with left_col:
62
  st.image(image, caption='Uploaded Image', use_column_width=True)
63
+
64
+ with right_col:
65
+ if st.button("Run OCR"):
66
  with st.spinner("Processing..."):
67
+ # Load the selected model (cached using @st.cache_resource)
68
  tokenizer, model = load_model(model_option)
69
  result_text = run_GOT(image, tokenizer, model)
70
+
71
+ if "Error" not in result_text:
72
+ # Keyword input for search
73
+ keyword = st.text_input("Enter a keyword to highlight")
74
+
75
+ # Highlight keyword in the extracted text
76
+ highlighted_text = highlight_keyword(result_text, keyword)
77
+
78
+ # Display the extracted text
79
+ st.markdown(highlighted_text, unsafe_allow_html=True)
80
+ else:
81
+ st.error(result_text)