Text-To-Image / app.py
EvgenyK's picture
Update app.py
fbb89ca
raw
history blame
2.06 kB
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
from io import BytesIO
from PIL import Image as PILIMAGE
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
#Selecting device based on availability of GPUs
device = "cuda" if torch.cuda.is_available() else "cpu"
#Defining model, processor and tokenizer
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
#Loading the data
photos = pd.read_csv("./items_data.csv")
photo_features = np.load("./features.npy")
photo_ids = pd.read_csv("./photo_ids.csv")
photo_ids = list(photo_ids['photo_id'])
def find_best_matches(text):
#Inference
with torch.no_grad():
# Encode and normalize the description using CLIP
inputs = tokenizer([text], padding=True, return_tensors="pt")
inputs = processor(text=[text], images=None, return_tensors="pt", padding=True)
text_encoded = model.get_text_features(**inputs).detach().numpy()
# Finding Cosine similarity
similarities = list((text_encoded @ photo_features.T).squeeze(0))
#Block of code for displaying top 3 best matches (images)
matched_images = []
for i in range(3):
idx = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)[i][1]
photo_id = photo_ids[idx]
photo_data = photos[photos["Uniq Id"] == photo_id].iloc[0]
response = requests.get(photo_data["Image"] + "?w=640")
img = PILIMAGE.open(BytesIO(response.content))
matched_images.append(img)
return matched_images
#Gradio app
iface = gr.Interface(fn=find_best_matches, inputs=[gr.inputs.Textbox(lines=1, label="Text query", placeholder="Introduce the search text...",)],
theme = "dark",
outputs=gr.outputs.Carousel([gr.outputs.Image(type="pil")]),
enable_queue=True).launch()