emotion-llm / app.py
Garvitj's picture
Update app.py
4a21329 verified
raw
history blame
8.68 kB
import gradio as gr
import numpy as np
import cv2
import librosa
import speech_recognition as sr
import tempfile
import wave
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.models import load_model, model_from_json
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import json
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from collections import Counter
from pydub import AudioSegment
import ffmpeg
nltk.download('punkt') # Tokenizer
nltk.download('wordnet') # WordNet lemmatizer
nltk.download('stopwords') # Stopwords
# Load the text model
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
model_json = json_file.read()
text_model = model_from_json(model_json)
text_model.load_weights("model_for_text_emotion_updated(1).keras")
# Load the encoder and scaler for audio
with open('encoder.pkl', 'rb') as file:
encoder = pickle.load(file)
with open('scaler.pkl', 'rb') as file:
scaler = pickle.load(file)
# Load the tokenizer for text
with open('tokenizer.json') as json_file:
tokenizer_json = json.load(json_file)
tokenizer = tokenizer_from_json(tokenizer_json)
# Load the audio model
audio_model = load_model('my_model.h5')
# Load the image model
image_model = load_model('model_emotion.h5')
# Initialize NLTK
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
# Preprocess text function
def preprocess_text(text):
tokens = nltk.word_tokenize(text.lower())
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
return ' '.join(lemmatized_tokens)
# Extract features from audio
def extract_features(data, sample_rate):
result = np.array([])
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
result = np.hstack((result, zcr))
stft = np.abs(librosa.stft(data))
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
result = np.hstack((result, chroma_stft))
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
result = np.hstack((result, mfcc))
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
result = np.hstack((result, rms))
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
result = np.hstack((result, mel))
return result
# Predict emotion from text
def find_emotion_using_text(sample_rate, audio_data, recognizer):
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
with wave.open(temp_audio_path, 'w') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio_data.tobytes())
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
return mapping[max_index]
# Predict emotion from audio
def predict_emotion(audio_data):
sample_rate, data = audio_data
data = data.flatten()
if data.dtype != np.float32:
data = data.astype(np.float32)
data = data / np.max(np.abs(data))
features = extract_features(data, sample_rate)
features = np.expand_dims(features, axis=0)
if features.ndim == 3:
features = np.squeeze(features, axis=2)
elif features.ndim != 2:
raise ValueError("Features array has unexpected dimensions.")
scaled_features = scaler.transform(features)
scaled_features = np.expand_dims(scaled_features, axis=2)
prediction = audio_model.predict(scaled_features)
emotion_index = np.argmax(prediction)
num_classes = len(encoder.categories_[0])
emotion_array = np.zeros((1, num_classes))
emotion_array[0, emotion_index] = 1
emotion_label = encoder.inverse_transform(emotion_array)[0]
return emotion_label
def preprocess_image(image):
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = image / 255.0
return image
# Predict emotion from image
def predict_emotion_from_image(image):
preprocessed_image = preprocess_image(image)
prediction = image_model.predict(preprocessed_image)
emotion_index = np.argmax(prediction)
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[emotion_index]
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
predictions = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every nth frame (to speed up processing)
if frame_count % int(frame_rate) == 0:
# Convert frame to grayscale as required by your model
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
frame = img_to_array(frame)
frame = np.expand_dims(frame, axis=0) / 255.0
# Predict emotion
prediction = image_model.predict(frame)
predictions.append(np.argmax(prediction))
frame_count += 1
cap.release()
cv2.destroyAllWindows()
# Find the most common prediction
most_common_emotion = Counter(predictions).most_common(1)[0][0]
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[most_common_emotion]
# Process audio from video and predict emotions
def process_audio_from_video(video_path):
audio_path = video_path.replace(".mp4", ".wav")
try:
# Extract audio using FFmpeg
ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=1, ar='16000').run(overwrite_output=True)
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(audio_path)
max_index = text_prediction.argmax()
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
# Load audio with pydub for NumPy conversion
audio_segment = AudioSegment.from_wav(audio_path)
sound_array = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
# Predict emotion from audio
audio_emotion = predict_emotion((16000, sound_array))
except Exception as e:
print(f"Error processing audio: {e}")
audio_emotion = "Error in audio processing"
return text_emotion, audio_emotion
# Main function to handle video emotion recognition
def transcribe_and_predict_video(video):
image_emotion = process_video(video)
text_emotion, audio_emotion = process_audio_from_video(video)
return f"Text Emotion: {text_emotion}, Audio Emotion: {audio_emotion}, Image Emotion: {image_emotion}"
# Create Gradio interface
iface = gr.Interface(fn=transcribe_and_predict_video,
inputs=gr.Video(),
outputs="text",
title="Multimodal Emotion Recognition from Video",
description="Upload a video to get text, audio, and image emotion predictions.")
iface.launch()