Spaces:
Sleeping
Sleeping
File size: 12,726 Bytes
b308ad4 8e737a7 b308ad4 ff25539 ea30d94 ff25539 b308ad4 2534fa7 4166fb4 ff25539 b308ad4 3671dd0 4166fb4 b308ad4 3671dd0 c1186e5 17c3e5b 4166fb4 3e98d50 83ac1b8 3e98d50 cbfbe0a 7ce6778 83ac1b8 4166fb4 3671dd0 4166fb4 481c4ca 3671dd0 4166fb4 3671dd0 4166fb4 3671dd0 b308ad4 4166fb4 c55a2a1 e281896 b308ad4 c55a2a1 b308ad4 a2c8df8 4166fb4 b308ad4 c55a2a1 b308ad4 4166fb4 b308ad4 4166fb4 b308ad4 83ac1b8 81cc688 3671dd0 81cc688 b308ad4 3671dd0 b308ad4 3671dd0 81cc688 4d48db2 81cc688 3671dd0 81cc688 40bbaae 81cc688 3671dd0 81cc688 3671dd0 81cc688 3e98d50 cbfbe0a 8e737a7 83ac1b8 3e98d50 cbfbe0a 478dc91 cbfbe0a 478dc91 017687c cbfbe0a 478dc91 666a6e2 3e98d50 478dc91 3e98d50 478dc91 3e98d50 478dc91 3e98d50 478dc91 3e98d50 478dc91 3e98d50 83ac1b8 3e98d50 83ac1b8 9c2b642 3e98d50 7ce6778 666a6e2 7ce6778 d71c7e5 7ce6778 666a6e2 04421b9 7ce6778 04421b9 7ce6778 04421b9 56c6360 04421b9 56c6360 04421b9 7ce6778 04421b9 578fe39 7ce6778 04421b9 7ce6778 666a6e2 7ce6778 04421b9 7ce6778 666a6e2 7ce6778 c822a7e 0b31888 c822a7e 0b31888 c822a7e 0b31888 c822a7e 0b31888 c822a7e 017687c c822a7e 0b31888 c822a7e 0b31888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
from matplotlib import ticker
import seaborn as sns
import plotnine as p9
import sys
import numpy as np
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')
from about import *
from saving_utils import download_from_hub
global data_component, filter_component
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
if benchmark_type == 'similarity':
return plot_similarity_results(methods_selected, x_metric, y_metric)
elif benchmark_type == 'function':
return plot_function_results(methods_selected, aspect, single_metric)
elif benchmark_type == 'family':
return plot_family_results(methods_selected, dataset)
elif benchmark_type == "affinity":
return plot_affinity_results(methods_selected, single_metric)
else:
return -1
def get_method_color(method):
return color_dict.get(method, 'black') # If method is not in color_dict, use black
def get_labels_and_title(x_metric, y_metric):
# Define mapping for long forms
long_form_mapping = {
"MF": "Molecular Function",
"BP": "Biological Process",
"CC": "Cellular Component"
}
# Parse the metrics
def parse_metric(metric):
parts = metric.split("_")
dataset = parts[0] # sparse/200/500
category = parts[1] # MF/BP/CC
measure = parts[2] # pvalue/correlation
return dataset, category, measure
x_dataset, x_category, x_measure = parse_metric(x_metric)
y_dataset, y_category, y_measure = parse_metric(y_metric)
# Determine the title
if x_category == y_category:
title = long_form_mapping[x_category]
else:
title = f"{long_form_mapping[x_category]} (x) vs {long_form_mapping[y_category]} (y)"
# Determine the axis labels
x_label = f"{x_measure.capitalize()} on {x_dataset.capitalize()} Dataset"
y_label = f"{y_measure.capitalize()} on {y_dataset.capitalize()} Dataset"
return title, x_label, y_label
def plot_similarity_results(methods_selected, x_metric, y_metric, similarity_path="/tmp/similarity_results.csv"):
if not os.path.exists(similarity_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
similarity_df = pd.read_csv(similarity_path)
# Filter the dataframe based on selected methods
filtered_df = similarity_df[similarity_df['Method'].isin(methods_selected)]
# Replace None or NaN values with 0 in relevant columns
filtered_df = filtered_df.fillna(0)
# Add a new column to the dataframe for the color
filtered_df['color'] = filtered_df['Method'].apply(get_method_color)
title, x_label, y_label = get_labels_and_title(x_metric, y_metric)
adjust_text_dict = {
'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
'force_text': (.0, 1.), 'force_objects': (.0, 1.),
'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
}
# Create the scatter plot using plotnine (ggplot)
g = (p9.ggplot(data=filtered_df,
mapping=p9.aes(x=x_metric, # Use the selected x_metric
y=y_metric, # Use the selected y_metric
color='color', # Use the dynamically generated color
label='Method')) # Label each point by the method name
+ p9.geom_point(size=3) # Add points with no jitter, set point size
+ p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points
+ p9.labs(title=title, x=x_label, y=y_label) # Dynamic labels for X and Y axes
+ p9.scale_color_identity() # Use colors directly from the dataframe
+ p9.theme(legend_position='none',
figure_size=(8, 8), # Set figure size
axis_text=p9.element_text(size=10),
axis_title_x=p9.element_text(size=12),
axis_title_y=p9.element_text(size=12))
)
# Save the plot as an image
save_path = "/tmp"
filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
g.save(filename=filename, dpi=400)
return filename
def plot_function_results(method_names, aspect, metric, function_path="/tmp/function_results.csv"):
if not os.path.exists(function_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
# Load data
df = pd.read_csv(function_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Filter columns for specified aspect and metric
columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")]
df = df[['Method'] + columns_to_plot]
df.set_index('Method', inplace=True)
# Fill missing values with 0
df = df.fillna(0)
df = df.T
# Generate colors for methods
row_color_dict = {method: get_method_color(method) for method in df.index}
long_form_mapping = {
"MF": "Molecular Function",
"BP": "Biological Process",
"CC": "Cellular Component"
}
# Create clustermap
g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=False, col_cluster=False, figsize=(15, 15))
title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}"
g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center') # Center the title above the plot
# Get heatmap axis and customize labels
ax = g.ax_heatmap
ax.set_xlabel("")
ax.set_ylabel("")
# Save the plot as an image
save_path = "/tmp"
filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png")
plt.savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_family_results(method_names, dataset, family_path="/tmp/family_results.csv"):
if not os.path.exists(family_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
df = pd.read_csv(family_path)
# Filter by method names and selected dataset columns
df = df[df['Method'].isin(method_names)]
# Filter columns based on the dataset and metrics
value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col]
# Reshape the DataFrame to long format
df_long = pd.melt(df, id_vars=["Method"], value_vars=value_vars, var_name="Dataset_Metric_Fold", value_name="Value")
print(df_long)
# Convert the "Value" column to numeric
df_long["Value"] = pd.to_numeric(df_long["Value"], errors="coerce")
# Drop rows with NaN values in "Value"
df_long = df_long.dropna(subset=["Value"])
# Split the "Dataset_Metric_Fold" column into "Metric" and "Fold"
df_long[["Metric", "Fold"]] = df_long["Dataset_Metric_Fold"].str[len(dataset) + 1:].str.split("_", expand=True)
df_long["Fold"] = df_long["Fold"].astype(int)
# Set up the plot
sns.set(rc={"figure.figsize": (13.7, 18.27)})
sns.set_theme(style="whitegrid", color_codes=True)
# Create boxplot
ax = sns.boxplot(data=df_long, x="Value", y="Method", hue="Metric", whis=np.inf, orient="h")
# Customize grid and ticks
ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2))
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.grid(visible=True, which="major", color="gainsboro", linewidth=1.0)
ax.grid(visible=True, which="minor", color="whitesmoke", linewidth=0.5)
ax.set_xlim(0, 1)
# Add dashed lines between methods
yticks = ax.get_yticks()
for ytick in yticks:
ax.hlines(ytick + 0.5, -0.1, 1, linestyles="dashed", color="gray")
# Apply color settings to y-axis labels
for label in ax.get_yticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
# Save the plot
save_path = "/tmp"
filename = os.path.join(save_path, f"{dataset}_family_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_affinity_results(method_names, metric, affinity_path="/tmp/affinity_results.csv"):
if not os.path.exists(affinity_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
df = pd.read_csv(affinity_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Gather columns related to the specified metric and validate
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
df = df[['Method'] + metric_columns].set_index('Method')
df = df.fillna(0)
df = df.T
# Set up the plot
sns.set(rc={'figure.figsize': (11.7, 8.27)})
sns.set_theme(style="whitegrid", color_codes=True)
# Create the boxplot
ax = sns.boxplot(data=df, whis=np.inf, orient="h")
# Add a swarmplot on top of the boxplot
sns.swarmplot(data=df, orient="h", color=".1", ax=ax)
# Set labels and x-axis formatting
ax.set_xlabel("Percent Pearson Correlation")
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.grid(visible=True, which='major', color='gainsboro', linewidth=1.0)
ax.grid(visible=True, which='minor', color='whitesmoke', linewidth=0.5)
# Apply custom color settings to y-axis labels
for label in ax.get_yticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
# Add legend
ax.legend(loc='best', frameon=True)
# Save the plot
save_path = "/tmp"
filename = os.path.join(save_path, f"{metric}_affinity_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def update_metric_choices(benchmark_type):
if benchmark_type == 'similarity':
# Show x and y metric selectors for similarity
metric_names = benchmark_specific_metrics.get(benchmark_type, [])
return (
gr.update(choices=metric_names, value=metric_names[0], visible=True),
gr.update(choices=metric_names, value=metric_names[1], visible=True),
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
)
elif benchmark_type == 'function':
# Show aspect and dataset type selectors for function
aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
metric_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
gr.update(visible=False),
gr.update(choices=metric_types, value=metric_types[0], visible=True)
)
elif benchmark_type == 'family':
# Show dataset and metric selectors for family
datasets = benchmark_specific_metrics[benchmark_type]['datasets']
metrics = benchmark_specific_metrics[benchmark_type]['metrics']
return (
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(choices=datasets, value=datasets[0], visible=True),
gr.update(visible=False)
)
elif benchmark_type == 'affinity':
# Show single metric selector for affinity
metrics = benchmark_specific_metrics[benchmark_type]
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |