File size: 9,326 Bytes
dd49f8a
 
 
 
 
 
7dcad68
 
dd49f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcad68
dd49f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcad68
 
dd49f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcad68
dd49f8a
 
 
 
 
 
 
7dcad68
dd49f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcad68
dd49f8a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
"""
Created on Mon Jun  8 09:32:26 2020

@author: Muammer
"""
import os 
script_dir = os.path.dirname(os.path.abspath(__file__))

import numpy as np
from sklearn.model_selection import cross_validate
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import classification_report
from sklearn.multiclass import OneVsRestClassifier
from sklearn import linear_model
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import pandas as pd 
from numpy import save
from sklearn.metrics import precision_recall_fscore_support
from tqdm import tqdm
from sklearn.metrics import accuracy_score
import math


representation_name = ""
representation_path = ""
dataset = "nc"
detailed_output = False

def convert_dataframe_to_multi_col(representation_dataframe):
    entry = pd.DataFrame(representation_dataframe['Entry'])
    vector = pd.DataFrame(list(representation_dataframe['Vector']))
    multi_col_representation_vector = pd.merge(left=entry,right=vector,left_index=True, right_index=True)
    return multi_col_representation_vector

def class_based_scores(c_report, c_matrix):
    c_report = pd.DataFrame(c_report).transpose()
    #print(c_report)
    c_report = c_report.drop(['precision', 'recall'], axis=1)
    c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0)
    cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
    #print(c_report)
    accuracy = cm.diagonal()
    
    #print(accuracy)
    #if len(accuracy) == 6:
     #   accuracy = np.delete(accuracy, 5)

    accuracy = pd.Series(accuracy, index=c_report.index)
    c_report['accuracy'] = accuracy
    
    total = c_report['support'].sum()
    #print(total)
    num_classes = np.shape(c_matrix)[0]
    mcc = np.zeros(shape=(num_classes,), dtype='float32')
    weights = np.sum(c_matrix, axis=0)/np.sum(c_matrix)
    total_tp = 0
    total_fp = 0
    total_fn = 0
    total_tn = 0

    for j in range(num_classes):
        tp = np.sum(c_matrix[j, j])
        fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
        fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
        tn = int(total - tp - fp - fn)
        total_tp = total_tp + tp
        total_fp = total_fp + fp
        total_fn = total_fn + fn
        total_tn = total_tn + tn
        #print(tp,fp,fn,tn)
        mcc[j] = ((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))
    #print(mcc)
    #if len(mcc) == 6:
     #   mcc = np.delete(mcc, 5)

    mcc = pd.Series(mcc, index=c_report.index)
    c_report['mcc'] = mcc
    #c_report.to_excel('../results/resultss_class_based_'+dataset+'.xlsx')
    #print(c_report)
    return c_report, total_tp, total_fp, total_fn, total_tn



def score_protein_rep(dataset):
#def score_protein_rep(pkl_data_path):

    vecsize = 0
    #protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
    protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
    dataframe = pd.read_csv(representation_path)
    #dataframe = convert_dataframe_to_multi_col(dataframe)    
    #dataframe = pd.read_pickle(pkl_data_path)
    vecsize = dataframe.shape[1]-1    
    x = np.empty([0, vecsize])
    xemp = np.zeros((1, vecsize), dtype=float)
    y = []
    ne = []

    print("\n\nPreprocessing data for drug-target protein family prediction...\n ")
    for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)):
        pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']]
        if len(pdrow) != 0:
            a = pdrow.loc[ : , pdrow.columns != 'Entry']
            a = np.array(a)
            a.shape = (1,vecsize)
            x = np.append(x, a, axis=0)
            y.append(row['Class'])
        else:
            ne.append(index)
            x = np.append(x, xemp, axis=0,)
            y.append(0.0)
            #print(index)

    x = x.astype(np.float64)
    y = np.array(y)
    y = y.astype(np.float64)
    #print(len(y))
    scoring = ['precision_weighted', 'recall_weighted', 'f1_weighted', 'accuracy']
    target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']
    labels = [1.0, 11.0, 12.0, 1005.0, 2000.0]
    
    f1 = []
    accuracy = []
    mcc = []
    f1_perclass = []
    ac_perclass = []
    mcc_perclass = []
    sup_perclass = []
    report_list = []
    train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/'+dataset+'_trainindex.csv'))
    test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
    train_index = train_index.dropna(axis=1) 
    test_index = test_index.dropna(axis=1)
    #print(train_index)
    #for index in ne:
       

    conf = pd.DataFrame()

    print('Producing protein family predictions...\n')
    for i in tqdm(range(10)): 
        clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3,random_state=i,n_jobs=-1)
        clf2 = OneVsRestClassifier(clf,n_jobs=-1)
        #print(test_index)
        train_indexx = train_index.iloc[i].astype(int)
        test_indexx = test_index.iloc[i].astype(int)
        #print(train_indexx)
        #train_indexx.drop(labels=ne)
        #print(type(train_indexx))
        for index in ne:
            
            train_indexx = train_indexx[train_indexx!=index]
            test_indexx = test_indexx[test_indexx!=index]
            


        train_X, test_X = x[train_indexx], x[test_indexx]
        train_y, test_y = y[train_indexx], y[test_indexx]

        clf2.fit(train_X, train_y)    
            
        #print(train_X)
        y_pred = clf2.predict(test_X)
           
        #y_pred = cross_val_predict(clf2, x, y, cv=10, n_jobs=-1)
        #mcc.append(matthews_corrcoef(test_y, y_pred, sample_weight = test_y))
        f1_ = f1_score(test_y, y_pred, average='weighted')
        f1.append(f1_)
        ac = accuracy_score(test_y, y_pred)
        accuracy.append(ac)
        c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
        c_matrix = confusion_matrix(test_y, y_pred, labels=labels)

        conf = conf.append(pd.DataFrame(c_matrix, columns=['Enzymes', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']), ignore_index=True) 
        class_report, tp, fp, fn, tn = class_based_scores(c_report, c_matrix)
        
        #print(total_tp)
        mcc.append(((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)))

        
        f1_perclass.append(class_report['f1-score'])
        ac_perclass.append(class_report['accuracy'])
        mcc_perclass.append(class_report['mcc'])
        sup_perclass.append(class_report['support'])
        report_list.append(class_report)
    
    if detailed_output:
        conf.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv'), index=None)

    f1_perclass = pd.concat(f1_perclass, axis=1)
    ac_perclass = pd.concat(ac_perclass, axis=1)
    mcc_perclass = pd.concat(mcc_perclass, axis=1)
    sup_perclass = pd.concat(sup_perclass, axis=1)
    
    report_list = pd.concat(report_list, axis=1)
    report_list.to_csv(os,path,join(script_dir, '../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv'))
    
    report = pd.DataFrame()    
    f1mean = np.mean(f1, axis=0)
    #print(f1mean)
    f1mean = f1mean.round(decimals=5)
    f1std = np.std(f1).round(decimals=5)
    acmean = np.mean(accuracy, axis=0).round(decimals=5)
    acstd = np.std(accuracy).round(decimals=5)
    mccmean = np.mean(mcc, axis=0).round(decimals=5)
    mccstd = np.std(mcc).round(decimals=5)
    labels = ['Average Score', 'Standard Deviation']
    report['Protein Family'] = labels
    report['F1_score'] = [f1mean, f1std]
    report['Accuracy'] = [acmean, acstd]
    report['MCC'] = [mccmean, mccstd]

    report.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False))
    #report.to_csv('scores_general.csv')
    #print(report)   
    if detailed_output:
        save('../results/Drug_target_protein_family_classification_f1_'+dataset+'_'+representation_name+'.npy', f1)
        save('../results/Drug_target_protein_family_classification_accuracy_'+dataset+'_'+representation_name+'.npy', accuracy)
        save('../results/Drug_target_protein_family_classification_mcc_'+dataset+'_'+representation_name+'.npy', mcc) 
        save('../results/Drug_target_protein_family_classification_class_based_f1_'+dataset+'_'+representation_name+'.npy', f1_perclass)
        save('../results/Drug_target_protein_family_classification_class_based_accuracy_'+dataset+'_'+representation_name+'.npy', ac_perclass)
        save('../results/Drug_target_protein_family_classification_class_based_mcc_'+dataset+'_'+representation_name+'.npy', mcc_perclass) 
        save('../results/Drug_target_protein_family_classification_class_based_support_'+dataset+'_'+representation_name+'.npy', sup_perclass)