PROBE / src /bin /target_family_classifier.py
mgyigit's picture
Update src/bin/target_family_classifier.py
acd43b4 verified
raw
history blame
5.34 kB
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 8 09:32:26 2020
@author: Muammer
"""
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import linear_model
from sklearn.metrics import (
f1_score, accuracy_score, confusion_matrix, classification_report, matthews_corrcoef
)
from sklearn.multiclass import OneVsRestClassifier
import pandas as pd
from tqdm import tqdm
import math
representation_name = ""
representation_path = ""
dataset = "nc"
detailed_output = False
def convert_dataframe_to_multi_col(representation_dataframe):
entry = pd.DataFrame(representation_dataframe['Entry'])
vector = pd.DataFrame(list(representation_dataframe['Vector']))
multi_col_representation_vector = pd.merge(left=entry, right=vector, left_index=True, right_index=True)
return multi_col_representation_vector
def class_based_scores(c_report, c_matrix):
c_report = pd.DataFrame(c_report).transpose()
c_report = c_report.drop(['precision', 'recall'], axis=1)
c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0)
cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
accuracy = cm.diagonal()
accuracy = pd.Series(accuracy, index=c_report.index)
c_report['accuracy'] = accuracy
total = c_report['support'].sum()
num_classes = np.shape(c_matrix)[0]
mcc = np.zeros(shape=(num_classes,), dtype='float32')
for j in range(num_classes):
tp = np.sum(c_matrix[j, j])
fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
tn = int(total - tp - fp - fn)
mcc[j] = ((tp * tn) - (fp * fn)) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
mcc = pd.Series(mcc, index=c_report.index)
c_report['mcc'] = mcc
return c_report
def score_protein_rep(dataset):
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
dataframe = pd.read_csv(representation_path)
vecsize = dataframe.shape[1] - 1
x = np.empty([0, vecsize])
xemp = np.zeros((1, vecsize), dtype=float)
y = []
ne = []
print("\n\nPreprocessing data for drug-target protein family prediction...\n ")
for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)):
pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']]
if len(pdrow) != 0:
a = pdrow.loc[:, pdrow.columns != 'Entry']
a = np.array(a)
a.shape = (1, vecsize)
x = np.append(x, a, axis=0)
y.append(row['Class'])
else:
ne.append(index)
x = np.append(x, xemp, axis=0)
y.append(0.0)
x = x.astype(np.float64)
y = np.array(y)
y = y.astype(np.float64)
target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']
labels = [1.0, 11.0, 12.0, 1005.0, 2000.0]
f1 = []
accuracy = []
mcc = []
report_list = []
train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/' + dataset + '_trainindex.csv'))
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
train_index = train_index.dropna(axis=1)
test_index = test_index.dropna(axis=1)
conf_matrices = []
print('Producing protein family predictions...\n')
for i in tqdm(range(10)):
clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3, random_state=i, n_jobs=-1)
clf2 = OneVsRestClassifier(clf, n_jobs=-1)
train_indexx = train_index.iloc[i].astype(int)
test_indexx = test_index.iloc[i].astype(int)
for index in ne:
train_indexx = train_indexx[train_indexx != index]
test_indexx = test_indexx[test_indexx != index]
train_X, test_X = x[train_indexx], x[test_indexx]
train_y, test_y = y[train_indexx], y[test_indexx]
clf2.fit(train_X, train_y)
y_pred = clf2.predict(test_X)
f1_ = f1_score(test_y, y_pred, average='weighted')
f1.append(f1_)
ac = accuracy_score(test_y, y_pred)
accuracy.append(ac)
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
conf_matrices.append(c_matrix)
class_report = class_based_scores(c_report, c_matrix)
mcc_score = matthews_corrcoef(test_y, y_pred)
mcc.append(mcc_score)
report_list.append(class_report)
f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1)
ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1)
mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1)
results = {
"f1": f1,
"accuracy": accuracy,
"mcc": mcc,
"confusion_matrices": conf_matrices,
"class_reports": report_list,
"f1_per_class": f1_perclass,
"accuracy_per_class": ac_perclass,
"mcc_per_class": mcc_perclass
}
return results