Spaces:
Sleeping
Sleeping
File size: 5,340 Bytes
dd49f8a 37a12fb acd43b4 dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 7dcad68 dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb 7dcad68 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb dd49f8a 37a12fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 8 09:32:26 2020
@author: Muammer
"""
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import linear_model
from sklearn.metrics import (
f1_score, accuracy_score, confusion_matrix, classification_report, matthews_corrcoef
)
from sklearn.multiclass import OneVsRestClassifier
import pandas as pd
from tqdm import tqdm
import math
representation_name = ""
representation_path = ""
dataset = "nc"
detailed_output = False
def convert_dataframe_to_multi_col(representation_dataframe):
entry = pd.DataFrame(representation_dataframe['Entry'])
vector = pd.DataFrame(list(representation_dataframe['Vector']))
multi_col_representation_vector = pd.merge(left=entry, right=vector, left_index=True, right_index=True)
return multi_col_representation_vector
def class_based_scores(c_report, c_matrix):
c_report = pd.DataFrame(c_report).transpose()
c_report = c_report.drop(['precision', 'recall'], axis=1)
c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0)
cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
accuracy = cm.diagonal()
accuracy = pd.Series(accuracy, index=c_report.index)
c_report['accuracy'] = accuracy
total = c_report['support'].sum()
num_classes = np.shape(c_matrix)[0]
mcc = np.zeros(shape=(num_classes,), dtype='float32')
for j in range(num_classes):
tp = np.sum(c_matrix[j, j])
fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
tn = int(total - tp - fp - fn)
mcc[j] = ((tp * tn) - (fp * fn)) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
mcc = pd.Series(mcc, index=c_report.index)
c_report['mcc'] = mcc
return c_report
def score_protein_rep(dataset):
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
dataframe = pd.read_csv(representation_path)
vecsize = dataframe.shape[1] - 1
x = np.empty([0, vecsize])
xemp = np.zeros((1, vecsize), dtype=float)
y = []
ne = []
print("\n\nPreprocessing data for drug-target protein family prediction...\n ")
for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)):
pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']]
if len(pdrow) != 0:
a = pdrow.loc[:, pdrow.columns != 'Entry']
a = np.array(a)
a.shape = (1, vecsize)
x = np.append(x, a, axis=0)
y.append(row['Class'])
else:
ne.append(index)
x = np.append(x, xemp, axis=0)
y.append(0.0)
x = x.astype(np.float64)
y = np.array(y)
y = y.astype(np.float64)
target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']
labels = [1.0, 11.0, 12.0, 1005.0, 2000.0]
f1 = []
accuracy = []
mcc = []
report_list = []
train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/' + dataset + '_trainindex.csv'))
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
train_index = train_index.dropna(axis=1)
test_index = test_index.dropna(axis=1)
conf_matrices = []
print('Producing protein family predictions...\n')
for i in tqdm(range(10)):
clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3, random_state=i, n_jobs=-1)
clf2 = OneVsRestClassifier(clf, n_jobs=-1)
train_indexx = train_index.iloc[i].astype(int)
test_indexx = test_index.iloc[i].astype(int)
for index in ne:
train_indexx = train_indexx[train_indexx != index]
test_indexx = test_indexx[test_indexx != index]
train_X, test_X = x[train_indexx], x[test_indexx]
train_y, test_y = y[train_indexx], y[test_indexx]
clf2.fit(train_X, train_y)
y_pred = clf2.predict(test_X)
f1_ = f1_score(test_y, y_pred, average='weighted')
f1.append(f1_)
ac = accuracy_score(test_y, y_pred)
accuracy.append(ac)
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
conf_matrices.append(c_matrix)
class_report = class_based_scores(c_report, c_matrix)
mcc_score = matthews_corrcoef(test_y, y_pred)
mcc.append(mcc_score)
report_list.append(class_report)
f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1)
ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1)
mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1)
results = {
"f1": f1,
"accuracy": accuracy,
"mcc": mcc,
"confusion_matrices": conf_matrices,
"class_reports": report_list,
"f1_per_class": f1_perclass,
"accuracy_per_class": ac_perclass,
"mcc_per_class": mcc_perclass
}
return results |