Spaces:
Sleeping
Sleeping
Update src/bin/target_family_classifier.py
Browse files
src/bin/target_family_classifier.py
CHANGED
@@ -96,7 +96,7 @@ def score_protein_rep(dataset):
|
|
96 |
train_index = train_index.dropna(axis=1)
|
97 |
test_index = test_index.dropna(axis=1)
|
98 |
|
99 |
-
conf_matrices = []
|
100 |
|
101 |
print('Producing protein family predictions...\n')
|
102 |
for i in tqdm(range(10)):
|
@@ -122,29 +122,24 @@ def score_protein_rep(dataset):
|
|
122 |
ac = accuracy_score(test_y, y_pred)
|
123 |
accuracy.append(ac)
|
124 |
|
125 |
-
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
|
126 |
-
c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
|
127 |
-
conf_matrices.append(c_matrix)
|
128 |
|
129 |
-
class_report = class_based_scores(c_report, c_matrix)
|
130 |
mcc_score = matthews_corrcoef(test_y, y_pred)
|
131 |
mcc.append(mcc_score)
|
132 |
|
133 |
-
report_list.append(class_report)
|
134 |
|
135 |
-
f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1)
|
136 |
-
ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1)
|
137 |
-
mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1)
|
138 |
|
139 |
results = {
|
140 |
"f1": f1,
|
141 |
"accuracy": accuracy,
|
142 |
"mcc": mcc,
|
143 |
-
"confusion_matrices": conf_matrices,
|
144 |
-
"class_reports": report_list,
|
145 |
-
"f1_per_class": f1_perclass,
|
146 |
-
"accuracy_per_class": ac_perclass,
|
147 |
-
"mcc_per_class": mcc_perclass
|
148 |
}
|
149 |
|
150 |
return results
|
|
|
96 |
train_index = train_index.dropna(axis=1)
|
97 |
test_index = test_index.dropna(axis=1)
|
98 |
|
99 |
+
#conf_matrices = []
|
100 |
|
101 |
print('Producing protein family predictions...\n')
|
102 |
for i in tqdm(range(10)):
|
|
|
122 |
ac = accuracy_score(test_y, y_pred)
|
123 |
accuracy.append(ac)
|
124 |
|
125 |
+
#c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
|
126 |
+
#c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
|
127 |
+
#conf_matrices.append(c_matrix)
|
128 |
|
129 |
+
#class_report = class_based_scores(c_report, c_matrix)
|
130 |
mcc_score = matthews_corrcoef(test_y, y_pred)
|
131 |
mcc.append(mcc_score)
|
132 |
|
133 |
+
#report_list.append(class_report)
|
134 |
|
135 |
+
#f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1)
|
136 |
+
#ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1)
|
137 |
+
#mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1)
|
138 |
|
139 |
results = {
|
140 |
"f1": f1,
|
141 |
"accuracy": accuracy,
|
142 |
"mcc": mcc,
|
|
|
|
|
|
|
|
|
|
|
143 |
}
|
144 |
|
145 |
return results
|