FORAI / web_demo_vision.py
Havi999's picture
Upload folder using huggingface_hub
144c0ad
raw
history blame
5.2 kB
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
# tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
# model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
# tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True)
# model = AutoModel.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True).float()
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B-Chat", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan-13B-Chat")
model = model.eval()
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, image_path, chatbot, max_length, top_p, temperature, history):
if image_path is None:
return [(input, "ε›Ύη‰‡δΈΊη©ΊοΌθ―·ι‡ζ–°δΈŠδΌ ε›Ύη‰‡εΉΆι‡θ―•γ€‚")]
chatbot.append((parse_text(input), ""))
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def predict_new_image(image_path, chatbot, max_length, top_p, temperature):
input, history = "描述这张图片。", []
chatbot.append((parse_text(input), ""))
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length,
top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return None, [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">VisualGLM</h1>""")
image_path = gr.Image(type="filepath", label="Image Prompt", value=None)
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history],
show_progress=True)
image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)