Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
from ultralytics.nn.tasks import SegmentationModel | |
from ultralytics.yolo import v8 | |
from ultralytics.yolo.utils import DEFAULT_CFG, RANK | |
from ultralytics.yolo.utils.plotting import plot_images, plot_results | |
# BaseTrainer python usage | |
class SegmentationTrainer(v8.detect.DetectionTrainer): | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initialize a SegmentationTrainer object with given arguments.""" | |
if overrides is None: | |
overrides = {} | |
overrides['task'] = 'segment' | |
super().__init__(cfg, overrides, _callbacks) | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Return SegmentationModel initialized with specified config and weights.""" | |
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def get_validator(self): | |
"""Return an instance of SegmentationValidator for validation of YOLO model.""" | |
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss' | |
return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
def plot_training_samples(self, batch, ni): | |
"""Creates a plot of training sample images with labels and box coordinates.""" | |
plot_images(batch['img'], | |
batch['batch_idx'], | |
batch['cls'].squeeze(-1), | |
batch['bboxes'], | |
batch['masks'], | |
paths=batch['im_file'], | |
fname=self.save_dir / f'train_batch{ni}.jpg', | |
on_plot=self.on_plot) | |
def plot_metrics(self): | |
"""Plots training/val metrics.""" | |
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png | |
def train(cfg=DEFAULT_CFG, use_python=False): | |
"""Train a YOLO segmentation model based on passed arguments.""" | |
model = cfg.model or 'yolov8n-seg.pt' | |
data = cfg.data or 'coco128-seg.yaml' # or yolo.ClassificationDataset("mnist") | |
device = cfg.device if cfg.device is not None else '' | |
args = dict(model=model, data=data, device=device) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).train(**args) | |
else: | |
trainer = SegmentationTrainer(overrides=args) | |
trainer.train() | |
if __name__ == '__main__': | |
train() | |