Spaces:
Running
Running
File size: 1,563 Bytes
ea98eb5 8e3ef38 ea98eb5 7c11828 ea98eb5 b412e38 d9fc0db ea98eb5 d9fc0db d4520ce ea98eb5 3e7688f ea98eb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from transformers import pipeline
from transformers import T5ForConditionalGeneration, T5Tokenizer
def tras_sum(input):
model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
# text summary generate
prefix = 'summary to en: '
src_text = prefix + input
input_ids = tokenizer(src_text, return_tensors="pt")
generated_tokens = model.generate(**input_ids)
traslated_summary = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return traslated_summary
# Load the summarization & translation model pipeline
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
# Streamlit application title
st.title("Emotion analysis")
st.write("Turn Your Input Into Sentiment Score")
# Text input for the user to enter the text to analyze
text = st.text_area("Enter the text", "")
# Perform analysis result when the user clicks the "Analyse" button
if st.button("Analyse"):
# Perform text classification on the input text
trans = tras_sum(text)[0]
results = sentiment_pipeline(trans)[0]
# Display the classification result
max_score = float('-inf')
max_label = ''
for result in results:
if result['score'] > max_score:
max_score = result['score']
max_label = result['label']
st.write("Text:", trans)
st.write("Label:", max_label)
st.write("Score:", max_score) |