Spaces:
Sleeping
Sleeping
I0210 12:02:02.231461 140467004882944 graph.py:498] napoleon | |
I0210 12:02:02.231686 140467004882944 graph.py:499] a1 a2 a3 = triangle; b3 = on_circle a1 a2, s_angle a1 a2 b3 60; b1 = on_circle a2 a3, s_angle a2 a3 b1 60; b2 = on_circle a3 a1, s_angle a3 a1 b2 60; c1 = circumcenter b1 a2 a3; c2 = circumcenter b2 a3 a1; c3 = circumcenter b3 a1 a2 ? cong c1 c2 c1 c3 | |
I0210 12:02:42.035380 140467004882944 alphageometry.py:191] | |
========================== | |
* From theorem premises: | |
A1 A2 A3 B3 B1 B2 C1 C2 C3 : Points | |
A_1B_3 = A_1A_2 [00] | |
∠B_3A_2A_1 = 1_PI/3 [01] | |
∠A_1A_2B_3 = 2_PI/3 [02] | |
A_2B_1 = A_2A_3 [03] | |
∠B_1A_3A_2 = 1_PI/3 [04] | |
∠A_2A_3B_1 = 2_PI/3 [05] | |
A_3B_2 = A_3A_1 [06] | |
∠B_2A_1A_3 = 1_PI/3 [07] | |
∠A_3A_1B_2 = 2_PI/3 [08] | |
C_1A_2 = C_1A_3 [09] | |
C_1B_1 = C_1A_2 [10] | |
C_2B_2 = C_2A_3 [11] | |
C_2A_3 = C_2A_1 [12] | |
C_3A_1 = C_3A_2 [13] | |
C_3B_3 = C_3A_1 [14] | |
* Auxiliary Constructions: | |
: Points | |
* Proof steps: | |
001. C_1A_3 = A_2C_1 [09] ⇒ C_1A_3:C_2A_3 = C_1A_3:C_2A_3 [15] | |
002. C_2B_2 = C_2A_3 [11] & C_2A_3 = C_2A_1 [12] ⇒ C_2A_1 = C_2B_2 [16] | |
003. A_3B_2 = A_3A_1 [06] & C_2A_1 = C_2B_2 [16] ⇒ A_1B_2 ⟂ A_3C_2 [17] | |
004. C_1B_1 = C_1A_2 [10] & C_1A_2 = C_1A_3 [09] ⇒ C_1A_3 = C_1B_1 [18] | |
005. A_2B_1 = A_2A_3 [03] & C_1A_3 = C_1B_1 [18] ⇒ A_3B_1 ⟂ A_2C_1 [19] | |
006. A_1B_2 ⟂ A_3C_2 [17] & A_3B_1 ⟂ A_2C_1 [19] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] | |
007. ∠B_2A_1A_3 = 1_PI/3 [07] & ∠B_1A_3A_2 = 1_PI/3 [04] ⇒ ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] | |
008. ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠C_1A_2A_3 = ∠C_2A_3A_1 [22] | |
009. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] | |
010. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠A_3A_2B_1 = ∠A_2C_1B_1 [24] | |
011. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠A_3A_2C_1 = ∠A_2B_1C_1 [25] | |
012. A_3B_2 = A_3A_1 [06] ⇒ ∠A_1B_2A_3 = ∠A_3A_1B_2 [26] | |
013. A_2B_1 = A_2A_3 [03] ⇒ ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] | |
014. ∠A_1B_2A_3 = ∠A_3A_1B_2 [26] & ∠A_3A_1B_2 = 2_PI/3 [08] & ∠A_2A_3B_1 = 2_PI/3 [05] & ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] ⇒ ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] | |
015. ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠B_2A_3A_1 = ∠B_1A_2A_3 [29] | |
016. ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠(A_3B_2-A_2B_1) = ∠A_1A_3A_2 [30] | |
017. A_3B_2 = A_3A_1 [06] & C_2A_3 = C_2A_1 [12] & C_2B_2 = C_2A_3 [11] (SSS)⇒ ∠B_2A_3A_1 = ∠A_3C_2A_1 [31] | |
018. ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] & ∠B_2A_3A_1 = ∠B_1A_2A_3 [29] & ∠B_2A_3A_1 = ∠A_3C_2A_1 [31] ⇒ ∠A_3C_2A_1 = ∠A_2C_1A_3 [32] | |
019. ∠C_1A_2A_3 = ∠C_2A_3A_1 [22] & ∠A_3C_2A_1 = ∠A_2C_1A_3 [32] (Similar Triangles)⇒ A_3A_2:A_1A_3 = A_3C_1:A_1C_2 [33] | |
020. A_3A_2:A_1A_3 = A_3C_1:A_1C_2 [33] & C_1A_2 = C_1A_3 [09] & C_2A_3 = C_2A_1 [12] & B_2A_3 = A_3A_1 [06] ⇒ A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] | |
021. ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] & ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] ⇒ ∠(A_2C_1-A_3C_2) = ∠(A_2B_1-A_3B_2) [35] | |
022. ∠A_3A_2B_1 = ∠A_3C_1A_2 [23] & ∠(A_2C_1-A_3C_2) = ∠(A_2B_1-A_3B_2) [35] ⇒ ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] | |
023. A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] & ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] (Similar Triangles)⇒ ∠A_3A_2B_2 = ∠A_3C_1C_2 [37] | |
024. A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] & ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] (Similar Triangles)⇒ ∠A_2B_2A_3 = ∠C_1C_2A_3 [38] | |
025. ∠A_3A_2B_2 = ∠A_3C_1C_2 [37] & ∠A_2B_2A_3 = ∠C_1C_2A_3 [38] (Similar Triangles)⇒ A_2A_3:A_2B_2 = C_1A_3:C_1C_2 [39] | |
026. C_3A_1 = C_3A_2 [13] & C_3B_3 = C_3A_1 [14] ⇒ C_3B_3 = C_3A_2 [40] | |
027. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_2 [40] ⇒ A_2B_3 ⟂ A_1C_3 [41] | |
028. A_3B_1 ⟂ A_2C_1 [19] & A_2B_3 ⟂ A_1C_3 [41] ⇒ ∠(A_2C_1-A_1C_3) = ∠(A_3B_1-A_2B_3) [42] | |
029. A_3B_1 ⟂ A_2C_1 [19] & A_2B_3 ⟂ A_1C_3 [41] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] | |
030. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠B_1A_3A_2 = 1_PI/3 [04] ⇒ ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] | |
031. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠(A_2C_1-A_1C_3) = ∠A_3A_2A_1 [45] | |
032. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] | |
033. ∠(A_2C_1-A_1C_3) = ∠(A_3B_1-A_2B_3) [42] & ∠(A_2C_1-A_1C_3) = ∠A_3A_2A_1 [45] ⇒ ∠A_3A_2A_1 = ∠(A_3B_1-A_2B_3) [47] | |
034. ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] & ∠A_3A_2A_1 = ∠(A_3B_1-A_2B_3) [47] ⇒ ∠A_2B_1A_3 = ∠B_3A_2A_1 [48] | |
035. A_1B_3 = A_1A_2 [00] ⇒ ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] | |
036. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] (Angle chase)⇒ ∠A_2A_1B_3 = 1_PI/3 [50] | |
037. ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] & ∠A_1A_2B_3 = 2_PI/3 [02] & ∠A_2A_3B_1 = 2_PI/3 [05] & ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] ⇒ ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] | |
038. ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] | |
039. ∠A_2B_1A_3 = ∠B_3A_2A_1 [48] & ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_2A_1B_3 = 1_PI/3 [50] & ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] ⇒ ∠A_3A_2B_1 = ∠A_2B_1A_3 [53] | |
040. ∠A_3A_2B_1 = ∠A_2B_1A_3 [53] ⇒ A_3A_2 = A_3B_1 [54] | |
041. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_1 [14] & C_3A_1 = C_3A_2 [13] (SSS)⇒ ∠A_2A_1B_3 = ∠A_1C_3B_3 [55] | |
042. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_1 [14] & C_3A_1 = C_3A_2 [13] (SSS)⇒ ∠B_3A_1A_2 = ∠A_1C_3A_2 [56] | |
043. ∠A_3A_2B_1 = ∠A_2C_1B_1 [24] & ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] & ∠A_2A_1B_3 = ∠A_1C_3B_3 [55] ⇒ ∠A_1C_3B_3 = ∠A_2C_1B_1 [57] | |
044. ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] & ∠A_1C_3B_3 = ∠A_2C_1B_1 [57] ⇒ ∠(B_3C_3-A_1A_2) = ∠(B_1C_1-A_2A_3) [58] | |
045. C_3B_3 = C_3A_1 [14] ⇒ ∠C_3B_3A_1 = ∠B_3A_1C_3 [59] | |
046. C_3B_3 = C_3A_2 [40] ⇒ ∠C_3B_3A_2 = ∠B_3A_2C_3 [60] | |
047. C_3A_1 = C_3A_2 [13] ⇒ ∠C_3A_1A_2 = ∠A_1A_2C_3 [61] | |
048. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] & ∠C_3B_3A_1 = ∠B_3A_1C_3 [59] & ∠C_3B_3A_2 = ∠B_3A_2C_3 [60] & ∠C_3A_1A_2 = ∠A_1A_2C_3 [61] (Angle chase)⇒ A_1A_2 ⟂ B_3C_3 [62] | |
049. ∠(B_3C_3-A_1A_2) = ∠(B_1C_1-A_2A_3) [58] & A_1A_2 ⟂ B_3C_3 [62] & A_3B_1 ⟂ A_2C_1 [19] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_1B_1-A_2A_3) [63] | |
050. ∠A_3A_2C_1 = ∠A_2B_1C_1 [25] & ∠(A_3B_2-A_2B_1) = ∠A_1A_3A_2 [30] ⇒ ∠(B_1C_1-A_3B_2) = ∠(A_2C_1-A_1A_3) [64] | |
051. ∠(A_2C_1-A_3B_1) = ∠(C_1B_1-A_2A_3) [63] & ∠(B_1C_1-A_3B_2) = ∠(A_2C_1-A_1A_3) [64] ⇒ ∠A_2A_3B_2 = ∠B_1A_3A_1 [65] | |
052. A_3A_2 = A_3B_1 [54] & A_3B_2 = A_3A_1 [06] & ∠A_2A_3B_2 = ∠B_1A_3A_1 [65] (SAS)⇒ B_2A_2 = A_1B_1 [66] | |
053. ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] & ∠B_1A_2A_3 = ∠B_3A_1A_2 [52] & ∠B_3A_1A_2 = ∠A_1C_3A_2 [56] ⇒ ∠A_1C_3A_2 = ∠A_2C_1A_3 [67] | |
054. ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] & ∠A_1C_3A_2 = ∠A_2C_1A_3 [67] (Similar Triangles)⇒ A_3A_2:A_2A_1 = A_3C_1:A_2C_3 [68] | |
055. A_3A_2:A_2A_1 = A_3C_1:A_2C_3 [68] & C_1A_2 = C_1A_3 [09] & C_3A_1 = C_3A_2 [13] & A_2B_1 = A_2A_3 [03] ⇒ A_2A_1:A_2B_1 = A_2C_3:A_2C_1 [69] | |
056. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] ⇒ ∠(A_2C_1-A_1C_3) = ∠(A_2B_1-A_1B_3) [70] | |
057. ∠A_2A_1B_3 = ∠A_2C_3A_1 [56] & ∠(A_2C_1-A_1C_3) = ∠(A_2B_1-A_1B_3) [70] ⇒ ∠C_3A_2C_1 = ∠A_1A_2B_1 [71] | |
058. A_2A_1:A_2B_1 = A_2C_3:A_2C_1 [69] & ∠C_3A_2C_1 = ∠A_1A_2B_1 [71] (Similar Triangles)⇒ B_1A_1:B_1A_2 = C_1C_3:C_1A_2 [72] | |
059. A_2A_3:A_2B_2 = C_1A_3:C_1C_2 [39] & B_2A_2 = A_1B_1 [66] & C_1A_2 = C_1A_3 [09] & B_1A_1:B_1A_2 = C_1C_3:C_1A_2 [72] & A_2B_1 = A_2A_3 [03] ⇒ C_1A_3:C_1C_3 = C_1A_3:C_1C_2 [73] | |
060. C_1A_3:C_2A_3 = C_1A_3:C_2A_3 [15] & C_1A_3:C_1C_3 = C_1A_3:C_1C_2 [73] ⇒ C_1C_3 = C_1C_2 | |
========================== | |
I0210 12:02:42.036046 140467004882944 alphageometry.py:195] Solution written to /home/tong_peng/pyvenv/agtest/ag.out. | |