File size: 21,842 Bytes
aeb6d58
 
 
 
 
 
cc8a66b
f276a79
6d540bf
 
 
ccde434
aac9ef0
ccde434
aeb6d58
 
 
 
 
 
4161029
aeb6d58
 
 
 
 
 
 
 
 
 
86e1422
aeb6d58
 
 
 
 
 
 
 
 
 
 
86e1422
aeb6d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e1422
 
 
 
 
 
 
 
 
 
 
5cd2be1
 
 
 
 
 
aeb6d58
 
cc8a66b
 
 
 
 
 
 
aeb6d58
 
 
 
 
 
 
 
cc8a66b
 
aeb6d58
 
 
 
 
 
cc8a66b
 
aeb6d58
cc8a66b
 
 
 
 
 
54696b7
 
 
cc8a66b
 
 
 
 
 
 
5cd2be1
 
cc8a66b
ed92462
 
 
 
 
 
 
 
5cd2be1
 
 
 
 
 
 
 
 
ed92462
5cd2be1
 
 
 
 
 
ed92462
5cd2be1
 
 
cc8a66b
 
aeb6d58
 
 
 
aac9ef0
 
aeb6d58
aac9ef0
ccde434
 
 
aac9ef0
 
ccde434
aac9ef0
ccde434
aeb6d58
 
 
ccde434
aeb6d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf92c8
aeb6d58
 
 
 
 
 
 
 
 
 
 
f276a79
6d540bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f276a79
 
 
 
 
 
 
 
 
 
 
 
 
848ffbd
 
 
f276a79
848ffbd
 
f276a79
54a0a2e
 
f276a79
6d540bf
54a0a2e
 
 
 
848ffbd
 
16dece6
848ffbd
 
 
 
6d540bf
848ffbd
6d540bf
848ffbd
 
 
6d540bf
848ffbd
 
cc491fa
848ffbd
 
 
6d540bf
848ffbd
 
 
6d540bf
848ffbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d540bf
f276a79
848ffbd
f276a79
 
 
 
 
aeb6d58
f276a79
aeb6d58
 
cc8a66b
aeb6d58
cc8a66b
aeb6d58
cc8a66b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96965d
aeb6d58
c96965d
aeb6d58
 
 
 
 
f276a79
aeb6d58
 
cc8a66b
 
 
aeb6d58
 
 
 
12d9ced
618188b
f276a79
618188b
aeb6d58
cc8a66b
 
aeb6d58
cc8a66b
 
aeb6d58
cc8a66b
 
aeb6d58
cc8a66b
 
aeb6d58
cc8a66b
 
 
aeb6d58
 
 
f276a79
 
 
 
 
 
 
 
 
 
 
aeb6d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import pandas as pd
import gradio as gr
import os
import re
import requests
from dotenv import load_dotenv
from matplotlib.colors import LinearSegmentedColormap
import plotly.express as px
import plotly.graph_objects as go
from sklearn.linear_model import LinearRegression
import numpy as np
from huggingface_hub import HfApi
from huggingface_hub.hf_api import HTTPError
from huggingface_hub.utils._errors import GatedRepoError

load_dotenv()
webhook_url = os.environ.get("WEBHOOK_URL")

file_name_list = [
    '7b',
    '3b',
    '1b5',
]

sheet_name_list = [
    'cr',
    'bpc',
    'bpb',
]

metric_list = [
    'Compression Rate (%)',
    'Bits Per Character (BPC)',
    'Bits Per Byte (BPB)',
]

model_size_list = [
    '~7B',
    '~3B',
    '~1.5B',
]

metric_to_sheet = {
    'Compression Rate (%)': 'cr',
    'Bits Per Character (BPC)': 'bpc',
    'Bits Per Byte (BPB)': 'bpb',
}

model_size_to_file_name = {
    '~7B': '7b',
    '~3B': '3b',
    '~1.5B': '1b5',
}

css = """

.gr-dataframe table {

    table-layout: fixed;

    width: 100%; /* Ensures the table fills its container */

}

.gr-dataframe th, .gr-dataframe td {

    width: 100px;  /* Set the exact width of each cell */

    overflow: hidden;  /* Ensures the content doesn't overflow */

    text-overflow: ellipsis;  /* Adds an ellipsis (...) if the text overflows */

    white-space: nowrap;  /* Keeps the content on a single line */

}

"""

about_md = """

# Uncheatable Eval



GitHub page: [https://github.com/Jellyfish042/uncheatable_eval](https://github.com/Jellyfish042/uncheatable_eval)



## Introduction

Traditional LLM benchmarks are easily compromised by unintentional or intentional data leakage, making many benchmarks unreliable and unable to truly reflect the capabilities of LLMs.



Uncheatable Eval addresses this issue by testing LLMs on real-time, newly generated data from the internet, 

ensuring that the evaluation is immune to data leaks and cannot be gamed.



## How?

Uncheatable Eval assesses the language modeling capabilities of LLMs on new data from various sources such as recent papers on arXiv, new projects on GitHub, news articles, and more. Since this data is brand new (e.g., from the past 1-2 weeks), it is impossible for these data to be included in the training sets of publicly released models, thus avoiding the impact of unintentional or intentional data leaks.



Specifically, we calculate the sum of negative log probabilities of the models on these texts. In other words, models that are more likely to generate these texts are considered better.



*Note* : Uncheatable Eval only tests base models.



## Q&A

### Why Calculate the Sum of Negative Log Probabilities?

First, the goal of language models, at least today's language models, is to generate text that is as realistic as possible, maximizing the probability of real text. They are trained and designed to do exactly this. Calculating the sum of negative log probabilities on real text is the most direct way to test this capability.



Second, from the perspective of "compression is intelligence," a good way to test a language model would be to use the model with an entropy coding algorithm for compression and test the model's compression rate [[1]](https://arxiv.org/abs/2309.10668)[[2]](https://arxiv.org/abs/2402.00861). A model with a lower compression rate is considered better. Using a language model + arithmetic coding as an example, it is easy to prove that a model's ability to compress a piece of text is proportional to the sum of its negative log probabilities on that text (see [proof](#proof-of-the-equivalence-between-compression-capability-and-negative-log-probability-sum)).

Therefore, the compression rate of a model can be directly calculated through the sum of negative log probabilities, and the method for this has been provided in `show_results_v2.ipynb`.

### Can Models Using Different Tokenizers Be Directly Compared?

Yes. When calculating the sum of negative log probabilities, we essentially treat the model + tokenizer as a single entity or system. As long as this system has a high probability of generating real text, we consider it better. From the perspective of compression, you can choose any tokenizer. From the compression rate perspective, we don't care; we only care about whether your system can compress the text more effectively.



### Is It Really Uncheatable? Can't I train my model on a large number of arXiv papers to improve its test performance on arXiv papers?

Uncheatable Eval's data sources currently include new arXiv papers, new GitHub projects, BBC news, AO3 fanfictions, and new Wikipedia entries, with more sources to be added in the future. If you genuinely achieve excellent results across these data by training extensively on these sources, I would consider you to have developed a genuinely good language model rather than cheating.



From my test results, accurately modeling these data is very challenging. I believe Uncheatable Eval more accurately reflects the value of every bit of data and computing you invest compared to other benchmarks. Models trained with more data and computing are almost always better, and there are no shortcuts. This is a key strength of Uncheatable Eval.



### Is This Too "Random"? Why Consider Random Texts from the Internet as Ground Truth?

This is why we choose rigorous and verified texts such as arXiv papers and news reports, which typically have better quality. Additionally, a round of Uncheatable Eval evaluates a model over millions of tokens, increasing the reliability of the results.



In fact, the model rankings obtained through Uncheatable Eval are very stable. For instance, the model ranked first in January's data is highly likely to remain first in February, March, April, May, and June, indicating that the data obtained through this method is sufficiently representative.

"""


def rename_columns(df):
    df.columns = [col.rsplit('_', maxsplit=1)[0] for col in df.columns]
    return df


def get_folders_matching_format(directory):
    pattern = re.compile(r'^\d{4}-\d{2}$')
    folders = []

    if not os.path.exists(directory):
        return folders

    for item in os.listdir(directory):
        full_path = os.path.join(directory, item)
        if os.path.isdir(full_path) and pattern.match(item):
            folders.append(full_path)

    return folders


def get_unique_column_names(all_data):
    # column_names = {}
    #
    # for folder_name, files in all_data.items():
    #     for file_name, sheets in files.items():
    #         for sheet_name, dataframe in sheets.items():
    #             for column in dataframe.columns:
    #                 if column not in ['Name', 'Average (The lower the better)', 'Parameters Count (B)']:
    #                     column_names[column] = None
    #
    # return list(column_names.keys())

    return ['ao3_\u200benglish', 'bbc_\u200bnews', 'wikipedia_\u200benglish', 'arxiv_\u200bcomputer_\u200bscience',
            'arxiv_\u200bphysics', 'github_\u200bcpp', 'github_\u200bpython']


def color_cell(value):
    return 'background-color: #fffdd0' if pd.notna(value) else 'default'


def update_table(period: str,

                 models: list,

                 metric: str,

                 visible_columns: list,

                 color_columns: list,

                 sort_by: str = 'Average (The lower the better)',

                 ascending: bool = True):
    target_data = all_data[period]
    target_metric = metric_to_sheet[metric]

    if models:
        target_model_size = [model_size_to_file_name[model] for model in models]
        combined_data = pd.concat([target_data[model][target_metric] for model in target_model_size], axis=0)
        combined_data['Name'] = combined_data['Name'].apply(lambda x: x.replace('.pth', ''))

        combined_data.reset_index(drop=True, inplace=True)

        if 'Average (The lower the better)' in combined_data.columns:
            relevant_columns = [col for col in visible_columns if
                                col not in ['Name', 'Parameters Count (B)', 'Average (The lower the better)']]
            combined_data['Average (The lower the better)'] = round(combined_data[relevant_columns].mean(axis=1), 3)

        sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
        sorted_data = sorted_data.rename(columns={'Average (The lower the better)': 'Average (lower=better)'})
        visible_columns = ['Name', 'Parameters Count (B)', 'Average (lower=better)'] + visible_columns
        filtered_data = sorted_data[visible_columns]

        filtered_data.columns = [col.replace('_', ' ') for col in filtered_data.columns]

        formatter = {col: "{:.3f}" for col in filtered_data.columns if
                     filtered_data[col].dtype in ['float64', 'float32']}

        def color_column(s):
            return ['background-color: #fffdd0' if pd.notna(x) else 'default' for x in s]

        # color gradient
        colors = ["#63be7b", "#ffffff", "#f8696b"]
        cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
        target_color_columns = []
        if 'Average' in color_columns:
            target_color_columns.append('Average (lower=better)')
        if 'Individual Tests' in color_columns:
            target_color_columns.extend([col for col in filtered_data.columns if
                                         col not in ['Name', 'Parameters Count (B)', 'Average (lower=better)']])

        # styler = filtered_data.style.format(formatter).background_gradient(
        #     cmap=cmap,
        #     subset=target_color_columns,
        #     vmin=min_value,
        #     vmax=max_value
        # ).apply(color_column, subset=['Parameters Count (B)'])

        # for better visualization
        vmin = {}
        vmax = {}
        for column in filtered_data.columns:
            if column in ['Name', 'Parameters Count (B)']:
                continue
            col_values = filtered_data[column]
            second_largest = col_values.nlargest(2).iloc[-1]
            vmin[column] = col_values.min()
            vmax[column] = second_largest

        target_color_columns = []
        if 'Average' in color_columns:
            target_color_columns.append('Average (lower=better)')
        if 'Individual Tests' in color_columns:
            target_color_columns.extend([col for col in filtered_data.columns if
                                         col not in ['Name', 'Parameters Count (B)', 'Average (lower=better)']])

        styler = filtered_data.style.format(formatter).map(color_cell, subset=['Parameters Count (B)'])
        for column in target_color_columns:
            styler = styler.background_gradient(cmap=cmap, subset=[column], vmin=vmin[column], vmax=vmax[column])

        return styler
    else:
        return pd.DataFrame()


def check_model_exists(model_id):
    api = HfApi()
    try:
        model_info = api.model_info(model_id)
        return "Exists and is accessible"
    except GatedRepoError:
        return "Exists but is restricted"
    except HTTPError as e:
        if e.response.status_code == 404:
            return "Does not exist"
        else:
            return "Error: " + str(e)


def submit_model(name):
    if 'Exists' not in check_model_exists(name):
        return f"# ERROR: Model {name} does not exist on Hugging Face!"

    try:
        response = requests.post(webhook_url, json={"content": name})
        if response.status_code == 200:
            response_data = response.json()
            if response_data.get('status') == 'success':
                return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
            else:
                return f"# ERROR: {response_data.get('message', 'Unknown error')}"
        else:
            return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}."
    except requests.exceptions.HTTPError:
        return "# ERROR: Network error while contacting queue. Please try again in a few minutes."
    except Exception as e:
        print(e)
        return "ERROR: Unexpected error. Please try again later."


all_data = {}
time_list = []
for folder in get_folders_matching_format('data'):
    folder_name = os.path.basename(folder)
    time_list.append(folder_name)
    if all_data.get(folder) is None:
        all_data[folder_name] = {}
    for file_name in file_name_list:
        if all_data.get(file_name) is None:
            all_data[folder_name][file_name] = {}
        for sheet_name in sheet_name_list:
            final_file_name = os.path.join(folder, file_name)
            all_data[folder_name][file_name][sheet_name] = rename_columns(
                pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))


# def create_scaling_plot(all_data, period):
#     selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
#     target_data = all_data[period]
#     new_df = pd.DataFrame()
#
#     for size in target_data.keys():
#         new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)
#
#     new_df.rename(columns={
#         'Parameters Count (B)': 'Params(B)',
#         'Average (The lower the better)': 'Compression Rate (%)'
#     }, inplace=True)
#
#     fig = px.scatter(new_df,
#                      x='Params(B)',
#                      y='Compression Rate (%)',
#                      title='Compression Rate Scaling Law',
#                      hover_name='Name'
#                      )
#     fig.update_traces(marker=dict(size=12))
#     return fig


def create_scaling_plot(all_data, period):
    selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
    target_data = all_data[period]
    new_df = pd.DataFrame()

    for size in target_data.keys():
        new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)

    new_df.rename(columns={
        'Parameters Count (B)': 'Params(B)',
        'Average (The lower the better)': 'Compression Rate (%)'
    }, inplace=True)

    new_df['Log Params(B)'] = np.log(new_df['Params(B)'])
    new_df['Log Compression Rate (%)'] = np.log(new_df['Compression Rate (%)'])

    fig = px.scatter(new_df,
                     x='Log Params(B)',
                     y='Log Compression Rate (%)',
                     title='Compression Rate Scaling Law',
                     hover_name='Name',
                     custom_data=['Params(B)', 'Compression Rate (%)']
                     )

    fig.update_traces(
        hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>"
    )

    names_to_connect = ['Meta-Llama-3-8B',
                        'stablelm-3b-4e1t',
                        'Qwen2-1.5B',
                        'TinyLlama-1.1B-intermediate-step-1431k-3T']
    connection_points = new_df[new_df['Name'].isin(names_to_connect)]

    new_df['Color'] = new_df['Name'].apply(lambda name: '#39C5BB' if name in names_to_connect else '#636efa')

    fig.update_traces(marker=dict(color=new_df['Color']))

    X = connection_points['Log Params(B)'].values.reshape(-1, 1)
    y = connection_points['Log Compression Rate (%)'].values
    model = LinearRegression().fit(X, y)

    x_min = connection_points['Log Params(B)'].min()
    x_max = connection_points['Log Params(B)'].max()
    extended_x = np.linspace(x_min, x_max * 1.25, 100)
    extended_x_original = np.exp(extended_x)
    trend_line_y = model.predict(extended_x.reshape(-1, 1))
    trend_line_y_original = np.exp(trend_line_y)

    trend_line = go.Scatter(
        x=extended_x,
        y=trend_line_y,
        mode='lines',
        line=dict(color='skyblue', dash='dash'),
        name='Trend Line',
        hovertemplate='<b>Params(B):</b> %{customdata[0]:.2f}<br>' +
                      '<b>Compression Rate (%):</b> %{customdata[1]:.2f}<extra></extra>',
        customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1)
    )

    fig.add_trace(trend_line)

    x_min = new_df['Params(B)'].min()
    x_max = new_df['Params(B)'].max()
    x_tick_vals = np.geomspace(x_min, x_max, num=5)
    x_tick_text = [f"{val:.1f}" for val in x_tick_vals]

    y_min = new_df['Compression Rate (%)'].min()
    y_max = new_df['Compression Rate (%)'].max()
    y_tick_vals = np.geomspace(y_min, y_max, num=5)
    y_tick_text = [f"{val:.1f}" for val in y_tick_vals]

    fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title='Params(B)')
    fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title='Compression Rate (%)', autorange='reversed')

    fig.update_layout(
        xaxis=dict(showgrid=True, zeroline=False),
        yaxis=dict(showgrid=True, zeroline=False)
    )

    fig.update_traces(marker=dict(size=12))

    return fig


initial_fig = create_scaling_plot(all_data, time_list[-1])

initial_period = time_list[-1]
initial_models = model_size_list
initial_metric = metric_list[0]
initial_columns = get_unique_column_names(all_data)
initial_colors = ['Average']

initial_data = update_table(initial_period, initial_models, initial_metric, initial_columns, initial_colors)

css = '''

.gradio-container {

    max-width: 95% !important;

}

.tab-buttons button {

    font-size: 1.3em;

}

.gr-dataframe th {

    white-space: normal;

    word-break: break-word;

}



'''

with gr.Blocks(css=css) as demo:
    gr.HTML('<h1 style="text-align:center"><span style="font-size:1.3em">πŸ† LLM Compression Leaderboard</span></h1>')
    gr.HTML(
        "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating won’t work 🚫; only compute πŸ’», data πŸ“Š, and real innovation πŸ”₯ can prevail!</span></h1>")
    with gr.Tabs() as tabs:
        with gr.Tab("πŸ† Leaderboard"):
            with gr.Row():
                with gr.Column():
                    period_selector = gr.Dropdown(label="Period", choices=time_list, value=time_list[0])
                    model_selector = gr.CheckboxGroup(label="Model", choices=model_size_list, value=model_size_list)
                    metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=metric_list[0])
                with gr.Column():
                    color_selector = gr.CheckboxGroup(label="Colored Columns",
                                                      choices=['Average', 'Individual Tests'],
                                                      value=['Average'])
                    colfilter = gr.CheckboxGroup(label="Data Source",
                                                 choices=get_unique_column_names(all_data),
                                                 value=get_unique_column_names(all_data))

            table = gr.Dataframe(initial_data, column_widths=[130, 60, 60, 35, 35, 40, 40, 35, 35, 35],
                                 wrap=True,
                                 height=800,
                                 )

            period_selector.change(update_table,
                                   inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
                                   outputs=table)
            model_selector.change(update_table,
                                  inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
                                  outputs=table)
            metric_selector.change(update_table,
                                   inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
                                   outputs=table)
            colfilter.change(update_table,
                             inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
                             outputs=table)
            color_selector.change(update_table,
                                  inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
                                  outputs=table)

        with gr.Tab("🌍 MultiLang"):
            gr.Markdown("## Coming soon...")
        with gr.Tab("πŸ“ˆ Scaling Law"):
            period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=time_list[0])

            def update_plot(period):
                new_fig = create_scaling_plot(all_data, period)
                return new_fig


            plot = gr.Plot(initial_fig)
            period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot)

        with gr.Tab("ℹ️ About"):
            gr.Markdown(about_md)
        with gr.Tab("πŸš€ Submit"):
            with gr.Group():
                with gr.Row():
                    model_name = gr.Textbox(max_lines=1,
                                            placeholder="Enter model name...",
                                            show_label=False,
                                            scale=4)
                    submit = gr.Button("Submit", variant="primary", scale=0)
            output = gr.Markdown(
                "# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")

            submit.click(fn=submit_model, inputs=model_name, outputs=output)

demo.launch()