File size: 6,368 Bytes
0e7ff76
 
344dad8
 
d2da9d1
0e7ff76
344dad8
2d708a8
 
 
 
 
 
 
 
 
 
0e7ff76
d2da9d1
 
 
344dad8
2d708a8
344dad8
0e7ff76
d2da9d1
344dad8
d2da9d1
 
344dad8
d2da9d1
344dad8
d2da9d1
 
 
 
 
 
 
0e7ff76
d2da9d1
 
 
 
2d708a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a6116
2d708a8
 
d2da9d1
2d708a8
d2da9d1
 
 
98a6116
2d708a8
 
 
0e7ff76
2d708a8
 
d2da9d1
 
 
 
2d708a8
d2da9d1
 
2d708a8
 
d2da9d1
 
 
0e7ff76
d2da9d1
 
 
 
 
2d708a8
d2da9d1
 
2d708a8
d2da9d1
 
 
 
 
 
2d708a8
0e7ff76
 
d2da9d1
 
2d708a8
0e7ff76
 
 
d2da9d1
 
 
 
 
2d708a8
 
 
 
 
d2da9d1
 
 
0e7ff76
d2da9d1
0e7ff76
 
2d708a8
d2da9d1
 
 
 
0e7ff76
d2da9d1
0e7ff76
 
2d708a8
 
 
 
 
 
 
 
0e7ff76
2d708a8
 
d2da9d1
0e7ff76
 
 
 
 
d2da9d1
2d708a8
 
0e7ff76
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from monitoring import PerformanceMonitor, measure_time

# Model configurations
MODEL_OPTIONS = {
    "Base Model": {
        "id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
        "is_base": True
    },
    "Fine-tuned Model": {
        "id": "Joash2024/Math-SmolLM2-1.7B",
        "is_base": False
    }
}

# Initialize performance monitor
monitor = PerformanceMonitor()

print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct")
tokenizer.pad_token = tokenizer.eos_token

def format_prompt(problem: str, problem_type: str) -> str:
    """Format input prompt for the model"""
    if problem_type == "Derivative":
        return f"""Given a mathematical function, find its derivative.

Function: {problem}
The derivative of this function is:"""
    elif problem_type == "Addition":
        return f"""Solve this addition problem.

Problem: {problem}
The solution is:"""
    else:  # Roots or Custom
        return f"""Find the derivative of this function.

Function: {problem}
The derivative is:"""

@measure_time
def get_model_response(problem: str, problem_type: str, model_info) -> str:
    """Get response from a specific model"""
    try:
        # Load model
        if model_info["is_base"]:
            print(f"Loading {model_info['id']}...")
            model = AutoModelForCausalLM.from_pretrained(
                model_info["id"],
                device_map="auto",
                torch_dtype=torch.float16
            )
        else:
            print("Loading base model for fine-tuned...")
            base = AutoModelForCausalLM.from_pretrained(
                "HuggingFaceTB/SmolLM2-1.7B-Instruct",
                device_map="auto",
                torch_dtype=torch.float16
            )
            print(f"Loading {model_info['id']}...")
            model = PeftModel.from_pretrained(base, model_info["id"])
        
        model.eval()
        
        # Format prompt and generate
        prompt = format_prompt(problem, problem_type)
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_length=100,
                num_return_sequences=1,
                temperature=0.1,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id
            )
        
        # Decode and extract response
        generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = generated[len(prompt):].strip()
        
        # Clean up
        del model
        if not model_info["is_base"]:
            del base
        torch.cuda.empty_cache()
        
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def solve_problem(problem: str, problem_type: str, model_type: str) -> tuple:
    """Solve a math problem using selected model"""
    if not problem:
        return "Please enter a problem", None
    
    # Record problem type
    monitor.record_problem_type(problem_type)
    
    # Get response from selected model
    model_info = MODEL_OPTIONS[model_type]
    response, time_taken = get_model_response(problem, problem_type, model_info)
    
    # Format response with steps
    output = f"""Solution: {response}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {response}"""
    
    # Record metrics
    monitor.record_response_time(model_type, time_taken)
    monitor.record_success(model_type, not response.startswith("Error"))
    
    # Get updated statistics
    stats = monitor.get_statistics()
    
    # Format statistics for display
    stats_display = f"""
### Performance Metrics

#### Response Times (seconds)
- {model_type}: {stats.get(f'{model_type}_avg_response_time', 0):.2f} avg

#### Success Rates
- {model_type}: {stats.get(f'{model_type}_success_rate', 0):.1f}%

#### Problem Types Used
"""
    for ptype, percentage in stats.get('problem_type_distribution', {}).items():
        stats_display += f"- {ptype}: {percentage:.1f}%\n"
    
    return output, stats_display

# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
    gr.Markdown("# Mathematics Problem Solver")
    gr.Markdown("Test our models on mathematical problems")
    
    with gr.Row():
        with gr.Column():
            problem_type = gr.Dropdown(
                choices=["Addition", "Root Finding", "Derivative", "Custom"],
                value="Derivative",
                label="Problem Type"
            )
            model_type = gr.Dropdown(
                choices=list(MODEL_OPTIONS.keys()),
                value="Fine-tuned Model",
                label="Model to Use"
            )
            problem_input = gr.Textbox(
                label="Enter your math problem",
                placeholder="Example: x^2 + 3x"
            )
            solve_btn = gr.Button("Solve", variant="primary")
    
    with gr.Row():
        solution_output = gr.Textbox(label="Solution", lines=5)
    
    # Performance metrics display
    with gr.Row():
        metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
    
    # Example problems
    gr.Examples(
        examples=[
            ["x^2 + 3x", "Derivative", "Fine-tuned Model"],
            ["144", "Root Finding", "Fine-tuned Model"],
            ["235 + 567", "Addition", "Fine-tuned Model"],
            ["\\sin{\\left(x\\right)}", "Derivative", "Fine-tuned Model"],
            ["e^x", "Derivative", "Fine-tuned Model"],
            ["\\frac{1}{x}", "Derivative", "Fine-tuned Model"],
            ["x^3 + 2x", "Derivative", "Fine-tuned Model"],
            ["\\cos{\\left(x^2\\right)}", "Derivative", "Fine-tuned Model"]
        ],
        inputs=[problem_input, problem_type, model_type],
        outputs=[solution_output, metrics_display],
        fn=solve_problem,
        cache_examples=True,
    )
    
    # Connect the interface
    solve_btn.click(
        fn=solve_problem,
        inputs=[problem_input, problem_type, model_type],
        outputs=[solution_output, metrics_display]
    )

if __name__ == "__main__":
    demo.launch()