Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer | |
import streamlit as st | |
from PIL import Image | |
import tempfile | |
def perform_ocr(image): | |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) | |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval() | |
res = model.chat(tokenizer, image, ocr_type='ocr') | |
return res | |
# Title and instructions | |
st.title(' OCR and Document Search Web Application Prototype') | |
st.write('Upload an image and extract text in Hindi and English. You can also search for keywords within the extracted text.') | |
# Upload the image | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "png", "jpeg"]) | |
# If an image is uploaded | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
temp_file.write(uploaded_file.getbuffer()) | |
temp_file_path = temp_file.name | |
# Perform OCR on the uploaded image | |
st.write("Extracting text...") | |
extracted_text = perform_ocr(temp_file_path) | |
st.write("Extracted Text:") | |
st.text_area("OCR Output", extracted_text, height=200) |