arunasrivastava's picture
styled row and dropdown
e61aa35
raw
history blame
8.66 kB
import gradio as gr
import pandas as pd
from pathlib import Path
import logging
from datetime import datetime
import sys
import uuid
from typing import Dict, Any
import numpy as np
# Add parent directory to path to import main
sys.path.append(str(Path(__file__).parent))
from main import (
StorageManager,
EvaluationRequest,
evaluate_model,
PATHS
)
logging.basicConfig(level=logging.INFO)
# Initialize storage manager
storage_manager = StorageManager(PATHS)
def load_leaderboard_data():
try:
return pd.DataFrame(storage_manager.load('leaderboard'))
except Exception as e:
logging.error(f"Error loading leaderboard: {e}")
return pd.DataFrame()
def format_leaderboard_df(df, sort_by="pwed"):
if df.empty:
return df
# Sort the original dataframe first
sort_column = "average_per" if sort_by.lower() == "per" else "average_pwed"
df = df.sort_values(by=sort_column, ascending=True) # Ascending=True means smaller values at top
# Then create display dataframe from the sorted data
display_df = pd.DataFrame({
"Model": df["model"],
"Average PER ⬇️": df["average_per"].apply(lambda x: f"{x:.4f}"),
"Average PWED ⬇️": df["average_pwed"].apply(lambda x: f"{x:.4f}"),
"Link": df["github_url"].apply(lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"),
"Submission Date": pd.to_datetime(df["submission_date"]).dt.strftime("%Y-%m-%d")
})
return display_df
def create_html_table(df):
return df.to_html(escape=False, index=False, classes="styled-table")
def update_leaderboard(sort_option: str) -> str:
try:
df = load_leaderboard_data()
formatted_df = format_leaderboard_df(df, sort_option.lower())
return create_html_table(formatted_df)
except Exception as e:
logging.error(f"Error updating leaderboard: {e}")
return "Error updating leaderboard"
def submit_evaluation(model_name: str, submission_name: str, github_url: str) -> str:
if not model_name or not submission_name:
return "⚠️ Please provide both model name and submission name."
try:
# Generate a task ID
task_id = str(uuid.uuid4())
# Create evaluation request
request = EvaluationRequest(
transcription_model=model_name,
submission_name=submission_name,
github_url=github_url if github_url else None,
subset="test"
)
# Create task entry
task = {
"id": task_id,
"model": model_name,
"subset": "test",
"submission_name": submission_name,
"github_url": github_url,
"status": "queued",
"submitted_at": datetime.now().isoformat()
}
# Save task
tasks = storage_manager.load('tasks')
tasks.append(task)
storage_manager.save('tasks', tasks)
# Start evaluation in background
import asyncio
asyncio.run(evaluate_model(task_id, request))
return f"βœ… Evaluation submitted successfully! Task ID: {task_id}"
except Exception as e:
return f"❌ Error: {str(e)}"
def check_status(query: str) -> Dict[str, Any]:
if not query:
return {"error": "Please enter a model name or task ID"}
try:
results = storage_manager.load('results')
tasks = storage_manager.load('tasks')
# First try to find by task ID
result = next((r for r in results if r["task_id"] == query), None)
task = next((t for t in tasks if t["id"] == query), None)
# If not found, try to find by model name
if not result:
result = next((r for r in results if r["model"] == query), None)
if not task:
task = next((t for t in tasks if t["model"] == query), None)
if result:
# If we found results, return them
return {
"status": "completed",
"model": result["model"],
"subset": result["subset"],
"num_files": result["num_files"],
"average_per": result["average_per"],
"average_pwed": result["average_pwed"],
"detailed_results": result["detailed_results"],
"timestamp": result["timestamp"]
}
elif task:
# If we only found task status, return that
return task
else:
return {"error": f"No results found for '{query}'"}
except Exception as e:
logging.error(f"Error checking status: {e}")
return {"error": f"Error checking status: {str(e)}"}
with gr.Blocks(css="""
.styled-table {
width: 100%;
border-collapse: collapse;
margin: 25px 0;
font-size: 0.9em;
font-family: sans-serif;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
}
.styled-table thead tr {
background: linear-gradient(45deg, #092746, #073562, #0A648F);
color: #ffffff;
text-align: left;
}
.styled-table th,
.styled-table td {
padding: 12px 15px;
}
.styled-table tbody tr {
border-bottom: 1px solid #dddddd;
}
""") as demo:
gr.Markdown("# 🎯 Phonemic Transcription Leaderboard")
gr.Markdown("#### Developed By: Koel Labs")
gr.Markdown("""
## Explanation of Metrics
- **PER (Phoneme Error Rate)**: The Levenshtein distance calculated between phoneme sequences of the predicted and actual transcriptions.
- **PWED (Phoneme Weighted Edit Distance)**: Edit distance between the predicted and actual phoneme sequences, weighted by the phonemic feature distance. Method provided by [panphon library](https://github.com/dmort27/panphon)
""")
gr.Markdown("""
## Test Set Information
The test set used for evaluation is from the [TIMIT speech corpus](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech). The TIMIT corpus is a widely used dataset for speech recognition research.
## Compute
This leaderboard uses the free basic plan (16GB RAM, 2vCPUs) to allow for reproducability. The evaluation may take several hours to complete. Please be patient and do not submit the same model multiple times.
""")
with gr.Tabs():
with gr.TabItem("πŸ† Leaderboard"):
with gr.Row(elem_classes="controls-row"):
# Controls side by side
sort_dropdown = gr.Dropdown(
choices=["PWED", "PER"],
value="PWED",
interactive=True,
scale=2,
container=False, # Removes the box around the dropdown
label=None # Removes the "Sort by" label
)
refresh_btn = gr.Button("Refresh πŸ”„", scale=2) # Simplified button text
leaderboard_html = gr.HTML(create_html_table(format_leaderboard_df(load_leaderboard_data())))
sort_dropdown.change(
fn=update_leaderboard,
inputs=[sort_dropdown],
outputs=leaderboard_html
)
refresh_btn.click(
fn=update_leaderboard,
inputs=[sort_dropdown],
outputs=leaderboard_html
)
with gr.TabItem("πŸ“ Submit Model"):
model_name = gr.Textbox(label="Model Name", placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft")
submission_name = gr.Textbox(label="Submission Name", placeholder="My Model v1.0")
github_url = gr.Textbox(label="Github/Kaggle/HF URL (optional)", placeholder="https://github.com/username/repo")
submit_btn = gr.Button("Submit")
result = gr.Textbox(label="Submission Status")
submit_btn.click(
fn=submit_evaluation,
inputs=[model_name, submission_name, github_url],
outputs=result
)
with gr.TabItem("πŸ“Š Model Status"):
query = gr.Textbox(label="Model Name or Task ID", placeholder="Enter model name (e.g., facebook/wav2vec2-lv-60-espeak-cv-ft)")
status_btn = gr.Button("Check Status")
status_output = gr.JSON(label="Status")
status_btn.click(
fn=check_status,
inputs=query,
outputs=status_output
)
if __name__ == "__main__":
demo.launch()