File size: 118,922 Bytes
f27460e
482bc30
94b8cb6
5609a56
756ea61
cb022bb
 
f672e00
 
 
 
 
43647c4
 
932fd0e
4a5b186
198db95
 
43647c4
cce05a1
 
 
198db95
43647c4
 
 
198db95
 
 
 
43647c4
 
 
 
 
 
 
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43647c4
198db95
43647c4
198db95
43647c4
 
 
 
 
 
 
 
 
198db95
43647c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198db95
 
 
 
43647c4
 
 
 
 
 
 
 
 
 
 
 
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43647c4
198db95
43647c4
198db95
cd998d9
198db95
c6418f1
 
f672e00
198db95
 
 
 
 
 
 
43647c4
 
 
198db95
 
 
f672e00
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43647c4
 
cd998d9
43647c4
 
 
 
 
cd998d9
43647c4
cd998d9
 
 
43647c4
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f672e00
198db95
 
 
c6418f1
198db95
 
 
 
 
 
 
 
f672e00
 
198db95
f672e00
198db95
f672e00
 
 
 
198db95
f672e00
 
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f672e00
 
198db95
f672e00
 
 
 
 
 
198db95
f672e00
 
198db95
f672e00
 
 
198db95
 
 
 
 
 
 
f672e00
198db95
f672e00
 
 
 
 
 
198db95
f672e00
 
 
cd998d9
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4c949
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286206e
 
cce05a1
 
f27460e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482bc30
 
cce05a1
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13f95f
482bc30
ed49cfb
b13f95f
482bc30
 
 
b13f95f
482bc30
879ad5c
482bc30
7878324
56ffade
 
482bc30
879ad5c
7878324
 
 
 
 
879ad5c
7878324
a075dd7
482bc30
6a73343
7878324
482bc30
 
 
 
 
 
7878324
482bc30
5509fa5
 
8eafcce
2c9eb60
 
5509fa5
 
bc92805
 
5509fa5
482bc30
5609a56
 
 
 
 
 
 
0e03629
 
 
 
 
 
 
5609a56
 
0e03629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5609a56
 
 
ad97da8
 
9cb6ce3
ad97da8
 
 
9cb6ce3
ad97da8
 
 
756ea61
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
756ea61
 
585cfa0
756ea61
7878324
 
585cfa0
b13f95f
edefa8c
 
 
ad97da8
a4229ac
9cb6ce3
a4229ac
 
9cb6ce3
edefa8c
 
 
 
 
 
9cb6ce3
 
093cc88
9cb6ce3
89304fe
 
093cc88
d58ed4c
093cc88
9cb6ce3
585cfa0
ad97da8
756ea61
76fdd6c
756ea61
 
 
74a1a54
756ea61
 
 
 
 
 
 
 
5609a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585cfa0
 
 
5609a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5509fa5
5609a56
5509fa5
 
5609a56
5509fa5
5609a56
 
5509fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce05a1
482bc30
 
 
 
 
94b8cb6
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
 
 
 
 
482bc30
 
94b8cb6
482bc30
94b8cb6
 
482bc30
 
 
 
94b8cb6
 
 
482bc30
 
94b8cb6
482bc30
94b8cb6
 
 
 
 
 
 
482bc30
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
 
d9f8b8b
 
 
 
 
482bc30
94b8cb6
 
482bc30
 
 
d9f8b8b
482bc30
 
 
 
94b8cb6
482bc30
 
d9f8b8b
 
 
 
 
482bc30
756ea61
94b8cb6
cbac46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984e889
 
cbac46a
 
 
 
 
 
 
 
 
6cfe6de
cbac46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
8937fd4
 
 
 
 
482bc30
 
 
 
cb022bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6aaec5
cb022bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932fd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce05a1
 
4a5b186
198db95
 
 
 
 
 
 
 
4a5b186
198db95
 
4a5b186
198db95
4a5b186
 
198db95
4a5b186
 
 
f27460e
85e04a6
fbacc67
8bbd85e
33582fc
ee7fb1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198db95
 
 
 
 
ee7fb1c
 
 
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fb1c
 
 
 
 
 
 
 
 
 
198db95
ee7fb1c
 
 
198db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5b186
 
 
8bbd85e
ee7fb1c
4a5b186
198db95
8bbd85e
 
659c0ce
 
32e1b31
4a5b186
 
 
4a7677d
89304fe
 
 
 
 
4a5b186
32e1b31
4a5b186
33582fc
 
659c0ce
32e1b31
 
 
659c0ce
32e1b31
33582fc
 
659c0ce
33582fc
198db95
659c0ce
 
 
 
 
 
 
 
 
 
 
 
 
32e1b31
659c0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e1b31
 
 
659c0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
198db95
 
 
 
659c0ce
198db95
 
 
 
 
 
 
 
 
659c0ce
198db95
 
 
 
 
659c0ce
198db95
659c0ce
 
 
 
 
 
 
 
4a5b186
 
 
 
 
89304fe
4a7677d
58528fa
4a7677d
89304fe
58528fa
89304fe
4a7677d
 
fbacc67
 
932fd0e
ee7fb1c
093cc88
 
f49bae8
 
 
 
 
 
 
 
85e04a6
 
 
3dc2230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e04a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bbd85e
4a5b186
ee7fb1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33582fc
 
 
 
 
 
 
 
 
 
f9b9206
 
c774bb6
62da353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b9206
 
 
 
33582fc
 
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7522136
fea8c78
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5d6aa
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5d6aa
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7677d
c774bb6
 
 
 
89304fe
c774bb6
f9b9206
 
4a7677d
f9b9206
 
c774bb6
4a5b186
 
f9b9206
659c0ce
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89304fe
be66298
 
f9b9206
 
 
 
be66298
f9b9206
 
 
 
 
 
be66298
 
 
f9b9206
 
 
be66298
89304fe
f9b9206
 
be66298
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be66298
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be66298
f9b9206
 
be66298
 
 
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be66298
 
 
 
 
 
 
f9b9206
 
 
 
 
4a7677d
4a5b186
89304fe
4a7677d
 
f9b9206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b602b14
f9b9206
 
be66298
f9b9206
be66298
f9b9206
 
 
 
be66298
 
f9b9206
 
 
 
 
b602b14
f9b9206
 
 
 
 
 
 
be66298
f9b9206
c774bb6
 
f9b9206
 
 
 
 
 
 
be66298
c774bb6
be66298
c774bb6
 
 
 
 
 
 
 
 
 
f9b9206
 
bffbbe1
f9b9206
 
 
 
c774bb6
f27460e
f672e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
import gradio as gr
import random
import json
import re
import os
import shutil
from PIL import Image
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import time
import psutil
from sentence_transformers import SentenceTransformer
import textwrap
from gradio_client import Client
import gc
import sys

#Imported Long Variables - comment for each move to search
from relatively_constant_variables import *

# # # Initialize the zero tensor on CUDA
# zero = torch.Tensor([0]).cuda()
# print(zero.device)  # This will print 'cpu' outside the @spaces.GPU decorated function

# # Load the embedding model
# embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# # Load the Qwen model and tokenizer
# llmguide_model = AutoModelForCausalLM.from_pretrained(
#     "Qwen/Qwen2-0.5B-Instruct",
#     torch_dtype="auto",
#     device_map="auto"
# )
# llmguide_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")

# #import knowledge_base from relatively_constant_variables

# # Create embeddings for the knowledge base
# knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])

# def retrieve(query, k=2):
#     query_embedding = embedding_model.encode([query])
#     similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
#     top_k_indices = similarities.argsort(descending=True)[:k]
#     return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]

# def get_ram_usage():
#     ram = psutil.virtual_memory()
#     return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"

# @spaces.GPU
# def llmguide_generate_response(prompt, doc_ids=None, stream=False):
#     print(zero.device)  # This will print 'cuda:0' inside the @spaces.GPU decorated function

#     messages = [
#         {"role": "system", "content": "You are a helpful assistant."},
#         {"role": "user", "content": prompt}
#     ]
#     text = llmguide_tokenizer.apply_chat_template(
#         messages,
#         tokenize=False,
#         add_generation_prompt=True
#     )
#     model_inputs = llmguide_tokenizer([text], return_tensors="pt").to(llmguide_model.device)

#     start_time = time.time()
#     total_tokens = 0

#     if stream:
#         streamer = TextIteratorStreamer(llmguide_tokenizer, skip_special_tokens=True)
#         generation_kwargs = dict(
#             model_inputs,
#             streamer=streamer,
#             max_new_tokens=512,
#             temperature=0.7,
#         )
#         thread = Thread(target=llmguide_model.generate, kwargs=generation_kwargs)
#         thread.start()

#         generated_text = ""
#         for new_text in streamer:
#             generated_text += new_text
#             total_tokens += 1
#             current_time = time.time()
#             tokens_per_second = total_tokens / (current_time - start_time)
#             yield generated_text, f"{tokens_per_second:.2f}", "", ", ".join(doc_ids) if doc_ids else "N/A"

#         ram_usage = get_ram_usage()
#         yield generated_text, f"{tokens_per_second:.2f}", ram_usage, ", ".join(doc_ids) if doc_ids else "N/A"
#     else:
#         generated_ids = llmguide_model.generate(
#             model_inputs.input_ids,
#             max_new_tokens=512
#         )
#         generated_ids = [
#             output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
#         ]
#         response = llmguide_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
#         total_tokens = len(generated_ids[0])
#         end_time = time.time()
#         tokens_per_second = total_tokens / (end_time - start_time)
#         ram_usage = get_ram_usage()
#         yield response, f"{tokens_per_second:.2f}", ram_usage, ", ".join(doc_ids) if doc_ids else "N/A"

# def process_query(query, use_rag, stream=False):
#     if use_rag:
#         retrieved_docs = retrieve(query)
#         context = " ".join([doc for doc, _ in retrieved_docs])
#         doc_ids = [doc_id for _, doc_id in retrieved_docs]
#         prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
#     else:
#         prompt = query
#         doc_ids = None
    
#     generator = llmguide_generate_response(prompt, doc_ids, stream)
    
#     if stream:
#         def stream_output():
#             for generated_text, tokens_per_second, ram_usage, doc_references in generator:
#                 yield generated_text, tokens_per_second, ram_usage, doc_references
#         return stream_output()
#     else:
#         # For non-streaming, we just need to get the final output
#         for generated_text, tokens_per_second, ram_usage, doc_references in generator:
#             pass  # This will iterate to the last yield
#         return generated_text, tokens_per_second, ram_usage, doc_references

#importing FAQAllprompts from relatively_constant_variables

#----Refactor-----

# Initialize the zero tensor on CUDA
zero = torch.Tensor([0]).cuda()
print(zero.device)  # This will print 'cpu' outside the @spaces.GPU decorated function

modelnames = ["Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen1.5-MoE-A2.7B-Chat", "HuggingFaceTB/SmolLM-135M-Instruct", "microsoft/Phi-3-mini-4k-instruct", 
              "unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "Groq/Llama-3-Groq-8B-Tool-Use", "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4", "SpectraSuite/TriLM_3.9B_Unpacked", "h2oai/h2o-danube3-500m-chat"
              "OuteAI/Lite-Mistral-150M-v2-Instruct"]
current_model_index = 5
modelname = modelnames[current_model_index]
lastmodelnameinloadfunction = None

# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Initialize model and tokenizer as global variables
model = None
tokenizer = None

def get_size_str(bytes):
    for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
        if bytes < 1024:
            return f"{bytes:.2f} {unit}"
        bytes /= 1024

def load_model(model_name):
    global model, tokenizer, lastmodelnameinloadfunction

    print(f"Loading model and tokenizer: {model_name}")
    
    # Record initial GPU memory usage
    initial_memory = torch.cuda.memory_allocated()

    # Clear old model and tokenizer if they exist
    if 'model' in globals() and model is not None:
        model = None
    if 'tokenizer' in globals() and tokenizer is not None:
        tokenizer = None
    
    torch.cuda.empty_cache()
    gc.collect()

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Calculate memory usage
    final_memory = torch.cuda.memory_allocated()
    memory_used = final_memory - initial_memory

    model_size = sum(p.numel() * p.element_size() for p in model.parameters())
    tokenizer_size = sum(sys.getsizeof(v) for v in tokenizer.__dict__.values())

    lastmodelnameinloadfunction = (model_name, model_size, tokenizer_size)
    print(f"Model and tokenizer {model_name} loaded successfully")
    print(f"Model size: {get_size_str(model_size)}")
    print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
    print(f"GPU memory used: {get_size_str(memory_used)}")

    return (f"Model and tokenizer {model_name} loaded successfully. "
            f"Model size: {get_size_str(model_size)}, "
            f"Tokenizer size: {get_size_str(tokenizer_size)}, "
            f"GPU memory used: {get_size_str(memory_used)}")


# Initial model load
load_model(modelname)

# For this example, let's use a knowledge base with close queries
# knowledge_base = [
#     {"id": "1", "content": "The capital of France is Paris. It's known for the Eiffel Tower."},
#     {"id": "2", "content": "The capital of Italy is Rome. It's famous for the Colosseum."},
#     {"id": "3", "content": "Python is a popular programming language, known for its simplicity."},
#     {"id": "4", "content": "Java is a widely-used programming language, valued for its portability."},
#     {"id": "5", "content": "Machine learning is a subset of artificial intelligence focused on data-driven learning."},
#     {"id": "6", "content": "Deep learning is a part of machine learning based on artificial neural networks."},
#     {"id": "7", "content": "Law is a Tekken character"},
#     {"id": "8", "content": "The law is very complicated"},
# ]

# Create embeddings for the knowledge base
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])

def retrieve(query, k=2):
    query_embedding = embedding_model.encode([query])
    similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
    top_k_indices = similarities.argsort(descending=True)[:k]
    return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]

def get_ram_usage():
    ram = psutil.virtual_memory()
    return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"

# Global dictionary to store outputs
output_dict = {}

def empty_output_dict():
    global output_dict
    output_dict = {}
    print("Output dictionary has been emptied.")

def get_model_details(model):
    return {
        "name": model.config.name_or_path,
        "architecture": model.config.architectures[0] if model.config.architectures else "Unknown",
        "num_parameters": sum(p.numel() for p in model.parameters()),
    }

def get_tokenizer_details(tokenizer):
    return {
        "name": tokenizer.__class__.__name__,
        "vocab_size": tokenizer.vocab_size,
        "model_max_length": tokenizer.model_max_length,
    }

@spaces.GPU
def generate_response(prompt, use_rag, stream=False):
    global output_dict
    
    print(zero.device)  # This will print 'cuda:0' inside the @spaces.GPU decorated function
    if use_rag:
        retrieved_docs = retrieve(prompt)
        context = " ".join([doc for doc, _ in retrieved_docs])
        doc_ids = [doc_id for _, doc_id in retrieved_docs]
        full_prompt = f"Context: {context}\nQuestion: {prompt}\nAnswer:"
    else:
        full_prompt = prompt
        doc_ids = None
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": full_prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(zero.device)
    start_time = time.time()
    total_tokens = 0
    
    print(output_dict)
    output_key = f"output_{len(output_dict) + 1}"
    print(output_key)
    output_dict[output_key] = {
        "input_prompt": prompt,
        "full_prompt": full_prompt,
        "use_rag": use_rag,
        "generated_text": "",
        "tokens_per_second": 0,
        "ram_usage": "",
        "doc_ids": doc_ids if doc_ids else "N/A",
        "model_details": get_model_details(model),
        "tokenizer_details": get_tokenizer_details(tokenizer),
        "timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time))
    }
    print(output_dict)

    if stream:
        streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
        generation_kwargs = dict(
            model_inputs,
            streamer=streamer,
            max_new_tokens=512,
            temperature=0.7,
        )
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        for new_text in streamer:
            output_dict[output_key]["generated_text"] += new_text
            total_tokens += 1
            current_time = time.time()
            tokens_per_second = total_tokens / (current_time - start_time)
            ram_usage = get_ram_usage()
            output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
            output_dict[output_key]["ram_usage"] = ram_usage
            yield (output_dict[output_key]["generated_text"], 
                   output_dict[output_key]["tokens_per_second"], 
                   output_dict[output_key]["ram_usage"], 
                   output_dict[output_key]["doc_ids"])
    else:
        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        total_tokens = len(generated_ids[0])
        end_time = time.time()
        tokens_per_second = total_tokens / (end_time - start_time)
        ram_usage = get_ram_usage()
        
        output_dict[output_key]["generated_text"] = response
        output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
        output_dict[output_key]["ram_usage"] = ram_usage
        print(output_dict)

        yield (output_dict[output_key]["generated_text"], 
               output_dict[output_key]["tokens_per_second"], 
               output_dict[output_key]["ram_usage"], 
               output_dict[output_key]["doc_ids"])

def get_output_details(output_key):
    if output_key in output_dict:
        return output_dict[output_key]
    else:
        return f"No output found for key: {output_key}"

# Update the switch_model function to return the load_model message
def switch_model(choice):
    global modelname
    modelname = choice
    load_message = load_model(modelname)
    return load_message, f"Current model: {modelname}"

# Update the model_change_handler function
def model_change_handler(choice):
    message, current_model = switch_model(choice)
    return message, current_model, message  # Use the same message for both outputs

def format_output_dict():
    global output_dict
    formatted_output = ""
    for key, value in output_dict.items():
        formatted_output += f"Key: {key}\n"
        formatted_output += json.dumps(value, indent=2)
        formatted_output += "\n\n"
    print(formatted_output)
    return formatted_output

#--------------------------------------------------------------------------------------------------------------------------------

#importing default_config from relatively_constant_variables

# Helper functions to dynamically add items
def add_inventory_item(inventory_items, type, name, description):
    new_item = {"type": type, "name": name, "description": description}
    inventory_items.append(new_item)
    return inventory_items

def add_skill(skills_items, branch, name, learned):
    new_skill = {"branch": branch, "name": name, "learned": learned == 'True'}
    skills_items.append(new_skill)
    return skills_items

def add_objective(objectives_items, id, name, complete):
    new_objective = {"id": id, "name": name, "complete": complete == 'True'}
    objectives_items.append(new_objective)
    return objectives_items

def add_target(targets_items, name, x, y, collisionType, collisiontext):
    new_target = {"name": name, "x": int(x), "y": int(y), "collisionType": collisionType, "collisiontext": collisiontext}
    targets_items.append(new_target)
    return targets_items

#-----------------------------------------------------------------------------------------------------------------------------------

#importing player_engagement_items and story_events from relatively_constant_variables

def pick_random_items(items, n):
    return random.sample(items, n)

def generate_timeline(events, label):
    timeline = []
    for event in events:
        timeline.append((random.randint(1, 100), label, event))
    return timeline

def create_story(timeline):
    story = []
    for entry in timeline:
        if entry[1] == "Story":
            story.append(f"The hero {entry[2].replace('engageBattle', 'engaged in a fierce battle').replace('solveRiddle', 'solved a complex riddle').replace('exploreLocation', 'explored a mysterious location')}.")
        else:
            story.append(f"The player interacted with {entry[2]}.")
    return " ".join(story)

def generate_story_and_timeline(no_story_timeline_points=10, no_ui_timeline_points=10, num_lists=1, items_per_list=1, include_existing_games=False, include_multiplayer=False): # , no_media_timeline_points=5, include_media=True):
    # Pick 10 random UI items
    random_ui_items = pick_random_items(player_engagement_items, no_ui_timeline_points)
    random_story_items = pick_random_items(story_events, no_story_timeline_points)

    # Generate UI and story timelines
    ui_timeline = generate_timeline(random_ui_items, "UI")
    story_timeline = generate_timeline(random_story_items, "Story")

    # Initialize merged timeline with UI and story timelines
    merged_timeline = ui_timeline + story_timeline
    #no_media_merged_timeline = ui_timeline + story_timeline
    #print(merged_timeline)
    #print(no_media_merged_timeline)

    # Include media-related items if specified
    # if include_media:
    #     media_files = generate_media_file_list(no_media_timeline_points)
    #     #rendered_media = render_media_with_dropdowns(media_files)
    #     media_timeline = generate_timeline(media_files, "Media")
    #     merged_timeline += media_timeline

    # print(merged_timeline)

    # Sort the merged timeline based on the random numbers
    merged_timeline.sort(key=lambda x: x[0])
    # no_media_merged_timeline.sort(key=lambda x: x[0])

    # Create the story
    story = create_story(merged_timeline)

    # Format the timeline for display
    formatted_timeline = "\n".join([f"{entry[0]}: {entry[1]} - {entry[2]}" for entry in merged_timeline])
    # no_media_formatted_timeline = "\n".join([f"{entry[0]}: {entry[1]} - {entry[2]}" for entry in no_media_merged_timeline])

    # game_structure_with_media = generate_game_structures(formatted_timeline) #, game_structure_without_media = generate_game_structures(formatted_timeline, no_media_formatted_timeline)
    game_structure_with_media =  convert_timeline_to_game_structure(formatted_timeline)

    print("simulplay debug - good to here 4")

    suggestions, selected_list_names = timeline_get_random_suggestions(num_lists, items_per_list, include_existing_games, include_multiplayer)

    print("simulplay debug - good to here 4")

    return formatted_timeline, story, json.dumps(game_structure_with_media, indent=2), suggestions, selected_list_names #no_media_formatted_timeline, json.dumps(game_structure_without_media, indent=2) #, game_structure_with_media

media_file_types = ["image", "video", "audio"]

def generate_media_file_list(n):
    return [random.choice(media_file_types) for _ in range(n)]


def show_elements(text):
    # Parse the input text
    pattern = r'(\d+): (UI|Story|Media) - (.+)'
    blocks = re.findall(pattern, text)
    
    # Sort blocks by their timestamp
    blocks.sort(key=lambda x: int(x[0]))
    
    outputs = []
    
    for timestamp, block_type, content in blocks:
        if block_type == 'UI':
            # Create HTML for UI elements
            ui_html = f'<div class="ui-element">{content}</div>'
            outputs.append(gr.HTML(ui_html))
        elif block_type == 'Story':
            # Display story elements as Markdown
            outputs.append(gr.Markdown(f"**{content}**"))
        elif block_type == 'Media':
            if content.lower() == 'audio':
                # Placeholder for audio element
                outputs.append(gr.Audio(label=f"Audio at {timestamp} in the order"))
            elif content.lower() == 'video':
                # Placeholder for video element
                outputs.append(gr.Video(label=f"Video at {timestamp} in the order"))
            elif content.lower() == 'image':
                # Placeholder for image element
                outputs.append(gr.Image(label=f"Image at {timestamp} in the order"))
    
    return outputs

def show_elements_json_input(json_input):
    data = json.loads(json_input)
    masterlocation1 = data['masterlocation1']
    
    outputs = []
    
    for location, details in masterlocation1.items():
        if location == 'end':
            continue
        
        with gr.Accordion(f"Location: {location} - Previous description {details['description']}", open=False):
            description = gr.Textbox(label="Description", value=details['description'], interactive=True)
            outputs.append(description)
            
            events = gr.Textbox(label="Events", value=json.dumps(details['events']), interactive=True)
            outputs.append(events)
            
            choices = gr.Textbox(label="Choices", value=json.dumps(details['choices']), interactive=True)
            outputs.append(choices)
            
            transitions = gr.Textbox(label="Transitions", value=json.dumps(details['transitions']), interactive=True)
            outputs.append(transitions)
            
            # New media field
            media = gr.Textbox(label="Media", value=json.dumps(details['media']), interactive=True)
            outputs.append(media)

            # New developernotes field
            developernotes = gr.Textbox(label="developernotes", value=json.dumps(details['developernotes']), interactive=True)
            outputs.append(developernotes)

    #adding/removing a field means incrementing/decreasing the i+n to match the fields
    num_current_unique_fields = 6
    
    def update_json(*current_values):
        updated_data = {"masterlocation1": {}}
        locations = [loc for loc in masterlocation1.keys() if loc != 'end']
        for i, location in enumerate(locations):
            updated_data["masterlocation1"][location] = {
                "description": current_values[i*num_current_unique_fields],
                "events": json.loads(current_values[i*num_current_unique_fields + 1]),
                "choices": json.loads(current_values[i*num_current_unique_fields + 2]),
                "transitions": json.loads(current_values[i*num_current_unique_fields + 3]),
                "media": json.loads(current_values[i*num_current_unique_fields + 4]),  # New media field
                "developernotes": json.loads(current_values[i*num_current_unique_fields + 5])
            }
        updated_data["masterlocation1"]["end"] = masterlocation1["end"]
        return json.dumps(updated_data, indent=2) #json.dumps(updated_data, default=lambda o: o.__dict__, indent=2)
    
    update_button = gr.Button("Update JSON - Still need to copy to correct textbox to load")
    json_output = gr.Textbox(label="Updated JSON - Still need to copy to correct textbox to load", lines=10)
    #json_output = gr.Code(label="Updated JSON", lines=10) #Locks whole UI so use textbox

    update_button.click(update_json, inputs=outputs, outputs=json_output)
    
    return outputs + [update_button, json_output] #, json_output_code]

def create_media_component(file_path):
    print(file_path)
    _, extension = os.path.splitext(file_path)
    extension = extension.lower()[1:]  # Remove the dot and convert to lowercase

    if extension in ['jpg', 'jpeg', 'png', 'gif', 'webp']:
        return gr.Image(value=file_path, label="Image Input")
    elif extension in ['mp4', 'avi', 'mov']:
        return gr.Video(value=file_path, label="Video Input")
    elif extension in ['mp3', 'wav', 'ogg']:
        return gr.Audio(value=file_path, label="Audio Input")
    else:
        return gr.Textbox(value=file_path, label=f"File: {os.path.basename(file_path)}")

def convert_timeline_to_game_structure(timeline):
    lines = timeline.split('\n')
    game_structure = {}
    current_location = 0
    sub_location = 0

    for i, line in enumerate(lines):
        if line.strip() == "":
            continue
        
        if line[0].isdigit():  # New location starts
            current_location += 1
            sub_location = 0
            location_key = f"location{current_location}"
            game_structure[location_key] = {
                "description": "",
                "events": [],
                "choices": ["continue"],
                "transitions": {},
                "media": [],
                "developernotes": []
            }
        else:  # Continue with sub-locations or media entries
            sub_location += 1
            location_key = f"location{current_location}_{sub_location}"
        
        # Extract the event description
        parts = line.split(': ', 1)
        if len(parts) == 2:
            prefix, rest = parts
            event_parts = rest.split(' - ', 1)
            if len(event_parts) == 2:
                event_type, event_description = event_parts
            else:
                event_type, event_description = "Unknown", rest
        else:
            event_type, event_description = "Unknown", line
        
        description = rest.strip() if event_type in ["Media", "UI"] else f"{event_type}: {event_description}"
        
        if sub_location == 0:
            game_structure[f"location{current_location}"]["description"] = description
        else:
            game_structure[f"location{current_location}"]["events"].append({
                "description": description,
                "type": event_type
            })
        
        # Set the transition to the next location or to the end
        if i < len(lines) - 1:
            next_line = lines[i + 1].strip()
            if next_line and next_line[0].isdigit():  # New location starts
                game_structure[f"location{current_location}"]["transitions"]["continue"] = f"masterlocation1_location{current_location + 1}"
            else:
                #game_structure[f"location{current_location}"]["transitions"]["continue"] = f"location_{current_location}_{sub_location + 1}"
                game_structure[f"location{current_location}"]["transitions"]["continue"] = "end"
        else:
            game_structure[f"location{current_location}"]["transitions"]["continue"] = "end"
    
    # Add an end location
    game_structure["end"] = {
        "description": "The adventure ends here.",
#         "choices": [],
#         "transitions": {}
        "choices": ["restart"],
        "transitions": {"restart": "location1"}  # Assuming location_1 is the start

    }
    
    # Wrap the game structure in master_location1
    wrapped_structure = {"masterlocation1": game_structure}
    
    return wrapped_structure
    
# def generate_game_structures(timeline_with_media): #, timeline_without_media):
    
#     game_structure_with_media = convert_timeline_to_game_structure(timeline_with_media)
#     #game_structure_without_media = convert_timeline_to_game_structure(timeline_without_media)
    
#     return game_structure_with_media #, game_structure_without_media


# def timeline_get_random_suggestions(num_lists, items_per_list):
#     """
#     Generate random suggestions from a specified number of lists.
    
#     :param num_lists: Number of lists to consider
#     :param items_per_list: Number of items to select from each list
#     :return: A list of randomly selected suggestions
#     """
#     selected_lists = random.sample(all_idea_lists, min(num_lists, len(all_idea_lists)))
#     suggestions = []
    
#     for lst in selected_lists:
#         suggestions.extend(random.sample(lst, min(items_per_list, len(lst))))
    
#     return suggestions

def timeline_get_random_suggestions(num_lists, items_per_list, include_existing_games, include_multiplayer):
    """
    Generate random suggestions from a specified number of lists.
    
    :param num_lists: Number of lists to consider
    :param items_per_list: Number of items to select from each list
    :param include_existing_games: Whether to include existing game inspiration lists
    :param include_multiplayer: Whether to include multiplayer features list
    :return: A tuple containing the list of randomly selected suggestions and the names of selected lists
    """
    available_lists = all_idea_lists.copy()
    if not include_existing_games:
        available_lists = [lst for lst in available_lists if lst not in existing_game_inspirations]
    if not include_multiplayer:
        available_lists = [lst for lst in available_lists if lst != multiplayer_features]
    
    selected_lists = random.sample(available_lists, min(num_lists, len(available_lists)))
    suggestions = []
    selected_list_names = []
    
    for lst in selected_lists:
        suggestions.extend(random.sample(lst, min(items_per_list, len(lst))))
        selected_list_names.append(list_names[all_idea_lists.index(lst)])
    
    return suggestions, selected_list_names

#-----------------------------------------------------------------------------------------------------------------------------------

class Player:
    def __init__(self):
        self.inventory = []
        self.money = 20
        self.knowledge = {}

    def add_item(self, item):
        self.inventory.append(item)

    def has_item(self, item):
        return item in self.inventory

    def update_knowledge(self, topic):
        self.knowledge[topic] = True

#importing all_states from relatively_constant_variables

def validate_transitions(all_states):
    errors = []
    for location, states in all_states.items():
        for state_key, state in states.items():
            for transition_key, transition_state in state['transitions'].items():
                # Check if the transition is to another location
                if transition_state in all_states:
                    trans_location, trans_state = transition_state, 'start'  # Assuming 'start' state for new locations
                elif '_' in transition_state:
                    trans_location, trans_state = transition_state.split('_')
                else:
                    trans_location, trans_state = location, transition_state

                # Validate the transition state
                if trans_location not in all_states or trans_state not in all_states[trans_location]:
                    errors.append(f"Invalid transition from {location}.{state_key} to {trans_location}.{trans_state}")

    return errors

path_errors = validate_transitions(all_states)
if path_errors:
    for error in path_errors:
        print(error)
else:
    print("All transitions are valid.")

class GameSession:
    def __init__(self, starting_location='village', starting_state='start'):
        self.player = Player()
        self.current_location = starting_location
        self.current_state = starting_state
        self.game_log = []

    def make_choice(self, choice_index):
        state = all_states[self.current_location][self.current_state]
        if 0 <= choice_index < len(state['choices']):
            choice = state['choices'][choice_index]
            next_state = state['transitions'][choice]

            self.game_log.append(f"You chose: {choice}")
            self.game_log.append(state['description'])

            if 'consequences' in state and choice in state['consequences']:
              if state['consequences'][choice]:
                  state['consequences'][choice](self.player)
              else:
                  # Handle empty consequence, e.g., log a message or provide a default action
                  print(f"No consequence for choice: {choice}")
                  # You can add any default action here if needed

            if '_' in next_state:
                self.current_location, self.current_state = next_state.split('_')
            else:
                self.current_state = next_state

            return self.get_current_state_info()
        else:
            return "Invalid choice. Please try again."

    def get_current_state_info(self):
        state = all_states[self.current_location][self.current_state]
        choices = [f"{idx + 1}. {choice}" for idx, choice in enumerate(state['choices'])]
        return state['description'], choices, "\n".join(self.game_log)
    
    def get_current_state_media(self):
        media = all_states[self.current_location][self.current_state]['media']
        return media


def start_game(starting_location='village', starting_state='start'):
    game_session = GameSession(starting_location, starting_state)
    description, choices, game_log = game_session.get_current_state_info()
    return description, choices, game_log, game_session

def make_choice(choice, game_session, with_media=False): #Calls the nested make choice function in the game session class
    if not choice:
        description, choices, game_log = game_session.get_current_state_info()
        return description, choices, "Please select a choice before proceeding.", game_session

    choice_index = int(choice.split('.')[0]) - 1 
    result = game_session.make_choice(choice_index)

    if with_media:
        media = game_session.get_current_state_media()
        return result[0], gr.update(choices=result[1]), result[2], game_session, media
    else:
        return result[0], gr.update(choices=result[1]), result[2], game_session

def load_game(custom_config=None, with_media=False):
    global all_states
    if not custom_config:
        return gr.update(value="No custom configuration provided."), None, None, None, None, None, None

    try:
        new_config = json.loads(custom_config)
        all_states = new_config

        # Determine the starting location and state
        starting_location = next(iter(all_states.keys()))
        starting_state = next(iter(all_states[starting_location].keys()))
        print(f"Starting location: {starting_location}, Starting state: {starting_state}")

        game_session = GameSession(starting_location, starting_state)
        description, choices, game_log = game_session.get_current_state_info()
        new_path_errors = validate_transitions(all_states)
        
        output_media = []

        if with_media:
            media_list = all_states[starting_location][starting_state].get('media', [])
            print(f"Media list: {media_list}")
            
            if media_list:
                for media_path in media_list:
                    #media_component = create_media_component(media_path)
                    output_media.append(media_path)
                print(f"Created {len(output_media)} media components")

        success_message = f"Custom configuration loaded successfully!\n{new_path_errors}"
        return (
            gr.update(value=success_message),
            game_log,
            description,
            gr.update(choices=choices),
            gr.update(value=custom_config),
            game_session,
            output_media if with_media else None
        )

    except json.JSONDecodeError as e:
        error_message = format_json_error(custom_config, e)
        return gr.update(value=error_message), None, None, None, None, gr.update(value=custom_config), None

    except Exception as e:
        error_message = f"Error loading custom configuration: {str(e)}"
        return gr.update(value=error_message), None, None, None, None, gr.update(value=custom_config), None

def format_json_error(config, error):
    lineno, colno = error.lineno, error.colno
    lines = config.split('\n')
    error_line = lines[lineno - 1] if lineno <= len(lines) else ""
    pointer = ' ' * (colno - 1) + '^'

    return f"""Invalid JSON format in custom configuration:
Error at line {lineno}, column {colno}:
{error_line}
{pointer}
Error details: {str(error)}"""

def display_website(link):
  html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
  gr.Info("If 404 then the space/page has probably been disabled - normally due to a better alternative")
  return html

initgameinfo = start_game()

#-----------------------------------------------------------------------------------------------------------------------------------

# Set the directory where files will be saved
SAVE_DIR = os.path.abspath("saved_media")

# Ensure the save directory exists
os.makedirs(SAVE_DIR, exist_ok=True)

# Define supported file extensions
SUPPORTED_EXTENSIONS = {
    "image": [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
    "audio": [".mp3", ".wav", ".ogg"],
    "video": [".mp4", ".avi", ".mov", ".webm"]
}

def save_file(file):
    if file is None:
        return "No file uploaded.", gr.update()

    try:
        # Get the original filename and extension
        original_filename = os.path.basename(file.name)
        _, extension = os.path.splitext(original_filename)

        # Check if the file extension is supported
        if not any(extension.lower() in exts for exts in SUPPORTED_EXTENSIONS.values()):
            return f"Unsupported file type: {extension}", gr.update()

        # Create a unique filename to avoid overwriting
        base_name = os.path.splitext(original_filename)[0]
        counter = 1
        new_filename = f"{base_name}{extension}"
        while os.path.exists(os.path.join(SAVE_DIR, new_filename)):
            new_filename = f"{base_name}_{counter}{extension}"
            counter += 1

        # Copy the file from the temporary location to our save directory
        dest_path = os.path.join(SAVE_DIR, new_filename)
        shutil.copy2(file.name, dest_path)

        # Return success message and updated FileExplorer
        return f"File saved as {SAVE_DIR}/{new_filename}", gr.update(value=SAVE_DIR), gr.update(value=None)
    except Exception as e:
        return f"Error saving file: {str(e)}", gr.update(value=SAVE_DIR), gr.update()

def view_file(file_path):
    if not file_path:
        return None, None, None, "No file selected."

    try:
        full_path = os.path.join(SAVE_DIR, file_path)
        _, extension = os.path.splitext(full_path)
        extension = extension.lower()

        if extension in SUPPORTED_EXTENSIONS["image"]:
            return Image.open(full_path), None, None, None
        elif extension in SUPPORTED_EXTENSIONS["audio"]:
            return None, full_path, None, None
        elif extension in SUPPORTED_EXTENSIONS["video"]:
            return None, None, full_path, None
        else:
            return None, None, None, f"Unsupported file type: {extension}"
    except Exception as e:
        return None, None, None, f"Error viewing file: {str(e)}"

def refresh_file_explorer():
    return gr.update()

#-----------------------------------------------------------------------------------------------------------------------------------

LinPEWFprevious_messages = []

def LinPEWFformat_prompt(current_prompt, prev_messages):
    formatted_prompt = textwrap.dedent("""
    Previous prompts and responses:
    {history}
    
    Current prompt:
    {current}
    
    Please respond to the current prompt, taking into account the context from previous prompts and responses.
    """).strip()
    
    history = "\n\n".join(f"Prompt {i+1}: {msg}" for i, msg in enumerate(prev_messages))
    return formatted_prompt.format(history=history, current=current_prompt)

#-----------------------------------------------------------------------------------------------------------------------------------

def TestGradioClientQwen270b(text):
    # client = Client("Qwen/Qwen2-72B-Instruct")
    # result = client.predict(
    #         query=text, #"Hello!!",
    #         history=[],
    #         system="You are a helpful assistant.",
    #         api_name="/model_chat"
    # )
    client = Client("CohereForAI/c4ai-command-r-v01")
    result = client.predict(
            user_message="Hello!!",
            api_name="/generate_response"
    )
    print(result)
    #print(result[1][0]) #All messages in the conversation
    #print(result[2]) # System prompt
    return result #result[1][0][1] # If supporting conversations this needs to return the last message instead

#-----------------------------------------------------------------------------------------------------------------------------------

with gr.Blocks() as demo:
    with gr.Accordion("Config and Asset Assistance - Click to open", open=False):
        gr.HTML("Jonas Tyroller - This problem changes your perspective on game dev - minimise the cost of exploration so you can explore more (17:00) | dont make the same game again but worse (:) <br>https://youtu.be/o5K0uqhxgsE")
        with gr.Accordion("Leaveraging LLMs"):
            with gr.Tab("ZeroGPU - Placeholder for now"):
                gr.HTML("Copy paste any old config to llm and ask to remix is the easiest <br>To bake 'Moral of the story' in you have to be very deliberate")
                gr.HTML("UI can be media and all items can have media")
                with gr.Tab("Any Request to Qwen2-0.5B"):
                    gr.HTML("Placeholder for https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF and https://huggingface.co/OuteAI/Lite-Mistral-150M-v2-Instruct as alternative")
                    gr.HTML("https://huggingface.co/spaces/HuggingFaceTB/SmolLM-135M-Instruct-WebGPU 125 mdeol to be tested as alternative (and all up to 1.5b - how to delte a model in your code?) - Need to go over the dataset to see how to prompt it - https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus ")
                    gr.HTML("Placeholder for qwen 2 72b as alternative use checkbox and gradio client api call")
                    gr.Markdown("# Qwen-0.5B-Instruct Language Model")
                    gr.Markdown("This demo uses the Qwen-0.5B-Instruct model to generate responses based on your input.")
                    gr.HTML("Example prompts: <br>I am writing a story about a chef. please write dishes to appear on the menu. <br>What are the most common decisions that a chef story would include? <br>What are the kinds problems that a chef story would include? <br>What are the kinds of out of reach goals that a chef story would include? <br>Continue this config - Paste any complete block of the config")
                    
                    with gr.Row():
                        with gr.Column():
                            llmguide_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...")
                            llmguide_stream_checkbox = gr.Checkbox(label="Enable streaming")
                            llmguide_submit_button = gr.Button("Generate")
                        
                        with gr.Column():
                            llmguide_output = gr.Textbox(lines=10, label="Generated Response")
                            llmguide_tokens_per_second = gr.Textbox(label="Tokens per Second")
                    
                    # llmguide_submit_button.click(
                    #     llmguide_generate_response,
                    #     inputs=[llmguide_prompt, llmguide_stream_checkbox],
                    #     outputs=[llmguide_output, llmguide_tokens_per_second],
                    # )
                with gr.Tab("General RAG (Pathfinder?) Attempt"):
                    gr.HTML("https://huggingface.co/spaces/mteb/leaderboard - Source for SOTA - current using all-MiniLM-L6-v2")
                    gr.HTML("Placeholder for weak RAG Type Charcter interaction test aka input for JSON 'Knowledge Base' Input")
                    # gr.Interface(
                    #     fn=process_query,
                    #     inputs=[
                    #         gr.Textbox(lines=2, placeholder="Enter your question here..."),
                    #         gr.Checkbox(label="Use RAG"),
                    #         gr.Checkbox(label="Stream output")
                    #     ],
                    #     outputs=[
                    #         gr.Textbox(label="Generated Response"),
                    #         gr.Textbox(label="Tokens per second"),
                    #         gr.Textbox(label="RAM Usage"),
                    #         gr.Textbox(label="Referenced Documents")
                    #     ],
                    #     title="RAG/Non-RAG Q&A System",
                    #     description="Ask a question with or without using RAG. The response is generated using a GPU-accelerated model. RAM usage and referenced document IDs (for RAG) are logged."
                    # )
                with gr.Tab("General FAQ Attempt"):
                    with gr.Tab("Front end as FAQ"):
                        FAQMainOutput = gr.TextArea(placeholder='Output will show here', value='')
                        FAQCustomButtonInput = gr.TextArea(lines=1, placeholder='Prompt goes here')

                        for category_name, category_prompts in FAQAllprompts.items():
                            with gr.Accordion(f"General {category_name} Pattern based", open=False):
                                with gr.Group():
                                    for index, (prompt, _) in enumerate(category_prompts):
                                        button = gr.Button(prompt)
                                        # button.click(llmguide_generate_response, inputs=[FAQCustomButtonInput, gr.State(index), gr.State(category_name)], outputs=FAQMainOutput)
                    with gr.Tab("Function Call as FAQ"):
                        gr.HTML("Placeholder for media task query routing as dual purpose in workflow and for user queries as psuedo RAG engine")
                        gr.HTML("https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#built-in-tooling - The three built-in tools (brave_search, wolfram_alpha, and code interpreter) can be turned on using the system prompt")

            with gr.Tab("ZeroGPU refactor"):
                model_name = gr.State(modelname)
                gr.Markdown(f"# Language Model with RAG and Model Switching")
                gr.Markdown("This demo allows you to switch between different Qwen models and use Retrieval-Augmented Generation (RAG).")
                gr.Markdown("**Note:** Model switching is intended for testing output quality. Due to GPU limitations, speed differences may not be apparent. Models requiring over 50GB to load will likely not work.")
                gr.Markdown("Need to add support for switching models and loading GGUF and GPTQ and BNB")
                gr.Markdown("57b MOE takes 6min to load and gets workload evicted - storage limit over 100G")

                with gr.Row():
                    with gr.Column():
                        model_dropdown = gr.Dropdown(choices=modelnames, value=modelname, label="Select Model")
                        current_model_info = gr.Markdown(f"Current model: {modelname}")
                        current_model_info2 = gr.Interface(lambda x: f"Current model: {lastmodelnameinloadfunction[0]} ({lastmodelnameinloadfunction[1]}) (tokeniser = {lastmodelnameinloadfunction[2]})", inputs=None, outputs=["markdown"], description="Check what was last loaded (As the space has memory and I havent figured how spaces work enough eg. how does multiple users affect this)") # gr.Markdown(f"Current model: {lastmodelnameinloadfunction}")
                        gr.HTML("Need to figure out my test function calling for groq-8b as it doesnt seem to answer chat properly - will need a seperate space - eg. letter counting, plural couting, using a function as form for llm to fill (like choosing which model and input parameters for media in game)?")
                        prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...")
                        stream_checkbox = gr.Checkbox(label="Enable streaming")
                        rag_checkbox = gr.Checkbox(label="Enable RAG")
                        submit_button = gr.Button("Generate")
                    
                    with gr.Column():
                        with gr.Tab("Current Response"):
                            output = gr.Textbox(lines=10, label="Generated Response")
                            tokens_per_second = gr.Textbox(label="Tokens per Second")
                            ram_usage = gr.Textbox(label="RAM Usage")
                            doc_references = gr.Textbox(label="Document References")
                        with gr.Tab("All Responses So far"):
                            gr.Markdown("As we want a iterative process all old responses are saved for now - will figure how to make per user solution - need some kind of hook onto the loading a space to assign random usercount with timestamp")
                            gr.Interface(format_output_dict, inputs=None, outputs=["textbox"])

                
                model_dropdown.change(
                    model_change_handler,
                    inputs=[model_dropdown],
                    outputs=[model_name, current_model_info, output]
                )

                submit_button.click(
                    generate_response,
                    inputs=[prompt, rag_checkbox, stream_checkbox],
                    outputs=[output, tokens_per_second, ram_usage, doc_references],
                )
            with gr.Tab("Hugging Chat"):
                gr.HTML("https://huggingface.co/chat<br>Huggingface chat supports - State Management (Threads), Image Generation and editing, Websearch, Document parsing (PDF?), Assistants and larger models than zero gpu can support in July 2024 (Unquantised 30B and above)")
                gr.HTML("Existing Assistants to use and planning custom assistants placeholder")
            with gr.Tab("Embedded Spaces and gradio client"):
                gr.HTML("In Asset Generation Tab under Text")
            with gr.Tab("Gradio Client"):
                gr.Interface(fn=TestGradioClientQwen270b, inputs="text", outputs="markdown", description="Single response test of gradio client - Cohere for test as api not working on Qwen/Qwen2-72B-Instruct, Use for testing like using a space and duplicate for heavy testing")
            with gr.Tab("Preview APIs"):
                gr.HTML("July 2024 - Gemini, Cohere and Groq rate limit free APIs")
        gr.Markdown("# Current Workflow = Mermaid Diagram to (1) Story to (2) Initial JSON (through LLM and fix JSON by hand) to JSON Corrections (through LLM and fix JSON by hand) to (4) Media prompts to (5) Asset Generation to (6) JSON Media field population")
        with gr.Tab("Workflow Piplines"):
            gr.HTML("<br>Workflow is currently based on using ZeroGPU space and resources - will add platform specific (chat changes prompts and native image generation changes order) flows much later <br>Prompt Testing has to be add each parameter level of models as smaller models can get it right with different wording")
            with gr.Tab("Mermaid Diagram to (1) Story"):
                gr.HTML("Below 70B seem to struggle here")
                gr.Code(WFStage1prompt , label="Prompt Used")
                with gr.Row():
                    gr.Textbox(TimeRelatedMermaidStoryAttempttoRefinefrom[0], lines=30)
                    gr.Textbox(TimeRelatedMermaidStoryAttempttoRefinefrom[1], lines=30)
                    gr.Textbox(TimeRelatedMermaidStoryAttempttoRefinefrom[2], lines=30)
                    gr.Textbox(TimeRelatedMermaidStoryAttempttoRefinefrom[3], lines=30)
                    gr.Textbox(TimeRelatedMermaidStoryAttempttoRefinefrom[4], lines=30)
            with gr.Tab("Story to (2) JSON (through LLM and fix JSON by hand)"):
                gr.HTML("This Step specifically has to be function call only if you explain the tool can take as many blocks as neccesary")
                gr.Code(WFStage2prompt , label="Prompt Used")
            with gr.Tab("Initial JSON (through LLM and fix JSON by hand) to (3) JSON Corrections (through LLM and fix JSON by hand)"):
                gr.Code("Lets a critique this JSON to find areas fix", label="prompt used")
            with gr.Tab("JSON Corrections (through LLM and fix JSON by hand) to (4) Media prompts"):
                gr.HTML("This Step specifically has to be function call only")
                gr.HTML("Gemma-9b and Mistral 8x7b is better at this prompt than llama 3.1 8b and 70b <br>Can add (each media field must get an entry) and (in python list of list format for plug and play) but they affect final output")
                gr.Code("Lets a make a list for the prompts we will use to make media objects in this JSON. Make one for a person to interpret and one for direct media generators that focus on keywords: ", label="prompt used")
            with gr.Tab("Media prompts to (5) Asset Generation"):
                gr.HTML("This Step specifically has to be function call only")
                gr.Code("For each Media item described classify it by media type and comment if in a story setting it would need timing ", label="prompt used")
                gr.HTML("This Step can be merged with the next if we can make a editor like in the semi-Auto space in test and edit tailored to just accepting the JSON and exposing only media part for editing")
            with gr.Tab("Asset Generation to (6) JSON Media field population"):
                gr.Code("Here is a list of file names - assume they are in the order of the empty media sections of the JSON and rewrite the JSON", label="prompt used")
            with gr.Tab("All Variations / Themes for entire workflow proccess - to be completed"):
                gr.HTML("Trying to abstract the process into one worflow is beyond me so multiple paths to goal (config) is the aim now")
                with gr.Tab("Branching - Decisions / Timeline Creation to Story to Config Conversation"):
                    gr.HTML("Structures for interesting timeline progression")
                    gr.HTML("Claude Artifacts to illustrate nested structure brainstorms - <br> https://claude.site/artifacts/4a910d81-1541-49f4-8531-4f27fe56cd1e <br> https://claude.site/artifacts/265e9242-2093-46e1-9011-ed6ad938be90?fullscreen=false <br> ")
                    gr.HTML("Placeholder - Considerations - Story from the perspective of Main character or NPC in the LLM genereated story")
                    mermaideditoriframebtn = gr.Button("Load Mermaid Editor")
                    mermaideditoriframe = gr.HTML("")
                    mermaideditoriframebtn.click(fn=lambda x: "<iframe src='https://mermaid.live/' width='100%' height='1000px'></iframe>", outputs=mermaideditoriframe)
                    with gr.Accordion("Mermaid Structures - click to open", open=False):
                        for key, item in mermaidstorystructures.items():
                            with gr.Accordion(key, open=False):
                                gr.Code(item, label=key)

                with gr.Tab("Linear - Player List to Empty Config with Edit support (Narrative based)"):
                    with gr.Accordion("Can copy in the Test Example State Machine tab - only linear path for now", open=False):
                        gr.Markdown("# Story and Timeline Generator")
                        gr.Markdown("Click the button to generate a random timeline and story based on UI elements and story events. <br>Ask an LLM to use this to write a story around")
                        with gr.Row():
                                game_structure_output_text_with_media = gr.Code(language="json")
                                #game_structure_output_text = gr.Code(language="json")
                    with gr.Accordion("JSON with no edits"):
                        gr.HTML("A long game is a bunch of short games")
                        with gr.Row():
                            timeline_output_with_assets = gr.Textbox(label="Timeline with Assets Considered (gaps = side quests)", lines=25)
                            #timeline_output = gr.Textbox(label="Timeline (Order might be different for now)", lines=20)
                            with gr.Column():
                                timeline_output_text = gr.Textbox(label="Random Suggestions", lines=10)
                                timeline_selected_lists_text = gr.Textbox(label="Selected Idea Lists for Inspiration", lines=2)
                            story_output = gr.Textbox(label="Generated Story (Order might be different for now)", lines=20)
                        with gr.Row():
                            generate_no_story_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of story timeline points")
                            generate_no_ui_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of ui timeline points")
                            #generate_no_media_timeline_points = gr.Slider(minimum=1, value=5, step=1, maximum=30, label="Choose the amount of media timeline points")
                            #generate_with_media_check = gr.Checkbox(label="Generate with media", value=True)
                        with gr.Row():
                            timeline_num_lists_slider = gr.Slider(minimum=1, maximum=len(all_idea_lists), step=1, label="Number of Lists to Consider", value=3)
                            timeline_items_per_list_slider = gr.Slider(minimum=1, maximum=10, step=1, label="Items per List", value=3)
                            timeline_include_existing_games = gr.Checkbox(label="Include Existing Game Inspirations", value=True)
                            timeline_include_multiplayer = gr.Checkbox(label="Include Multiplayer Features", value=True)
                        # timeline_generate_button = gr.Button("Generate Random Suggestions").click(
                        #     timeline_get_random_suggestions,
                        #     inputs=[timeline_num_lists_slider, timeline_items_per_list_slider, timeline_include_existing_games, timeline_include_multiplayer],
                        #     outputs=[timeline_output_text, timeline_selected_lists_text]
                        # )
                        generate_button = gr.Button("Generate Story and Timeline (Click to get UI that will assist with JSON formatting)")

                        @gr.render(inputs=game_structure_output_text_with_media)
                        def update(game_structure_output_text_with_media):
                            return show_elements_json_input(game_structure_output_text_with_media)
                        
                        generate_button.click(generate_story_and_timeline, inputs=[generate_no_story_timeline_points, generate_no_ui_timeline_points, timeline_num_lists_slider, timeline_items_per_list_slider, timeline_include_existing_games, timeline_include_multiplayer], outputs=[timeline_output_with_assets, story_output, game_structure_output_text_with_media, timeline_output_text, timeline_selected_lists_text]) #, generate_no_media_timeline_points, generate_with_media_check], outputs=[timeline_output_with_assets, timeline_output, story_output, game_structure_output_text_with_media, game_structure_output_text])

                with gr.Tab("Linear - Existing Media eg. Songs and Screenshots"):
                    gr.HTML("Media position in the story part beginning, during or end")

                with gr.Tab("Linear - Machine Leaning Architectures as game maps"):
                    gr.HTML("Transformers, SSMs, Image and Video Generation Architectures, GANs, RNNS, etc.")

                with gr.Tab("Linear - Prompt Engineering as basis for ideation process"):
                    gr.HTML("Current Assited workflow idea - Story timeline events suggestions (LLM / Premade List) | Merging events with premade mermaid structures (LLM + Story Text + Mermaid Text) | Edit mermaid till satisfied (LLM + Story Text) | Ask LLM to convert to config (LLM + JSON Text) | Edit config (LLM / User with format assistance or not) | Playtest and go back to mermaaid or config if there are problems")
                    gr.HTML("Interactive movie (UI interaction or no progress) vs Branching Paths (Maze)")
                    gr.HTML("Things that can change the workflow - Asset First (Make Asset and make the transitions using LLM), Export First (Custom JS config, Playcanvas, Unreal Engine reverse engineered to this spaces config?) Game Mechanics First (eg. Player Stats, Inventory and NPCS not implemented yet, so traversal type games best aka graph like structures)")
                    gr.HTML("Config writing = Remix old one, Ask LLM to make one, Endless combination testing using the prompt engineering above or writing by hand (prompt engineering on yourself)")    
                    gr.HTML("Can use song lyrics as thematic source")
                    gr.HTML("Placeholder for each below prompt getting a Textbox")
                    # for item in Storycraftprompts:
                    #     input = gr.State(item)
                    #     output = gr.Textbox("", label=item)
                    #     outputbtn = gr.Button(item).click(fn=llmguide_generate_response, inputs=input, outputs=output)
                    # for i, item in enumerate(Storycraftprompts, 1):
                    #     input = gr.State(item)
                    #     previous_input = gr.State(lambda: LinPEWFprevious_messages)
                    #     output = gr.Textbox("", label=f"Output {i}")
                        
                    #     def LinPEWF_update_and_generate(prompt, prev_msgs):
                    #         prev_msgs.append(prompt)
                    #         formatted_prompt = LinPEWFformat_prompt(prompt, prev_msgs)
                    #         response = llmguide_generate_response(formatted_prompt)
                    #         full_response = ""
                    #         for chunk in response:
                    #             full_response += chunk
                    #         prev_msgs.append(f"Response: {full_response}")
                    #         return full_response
                        
                    #     outputbtn = gr.Button(f"Generate {i}").click(
                    #         fn=LinPEWF_update_and_generate, 
                    #         inputs=[input, previous_input], 
                    #         outputs=output
                    #     )

                    #     LinPEWFprevious_messages.append(item)

                #with gr.Accordion("Decisions / Timeline Creation to Story to Config Conversation", open=False):
                with gr.Tab("Branching - Network analysis to Game config"):
                    gr.HTML("Placeholder for analysing multiple stories for their network structures and creating general rules for a strucutre generator based of named entity recognition and bias to locations or people - The extreme long way")

                with gr.Tab("Linear - Chess PNG to Game config"):
                    gr.HTML("Any Chess match can serve as end of game final battle")

        with gr.Tab("Main problem to solve - Concept combination / integration and non-linear progression planning"):
            gr.HTML("The story and the gameplay dont have to occur at the same time - eg. ")
            gr.Markdown("## Prompts / Mermaid diagrams to be made from the ideas for workflow")
            with gr.Tab("Using Time as a proxy for all conepts?"):
                gr.HTML("A timeline is the most important part of the story - once that is set you can do anything?")
            with gr.Tab("Concept Bashing? Ideas"):
                with gr.Row():
                    gr.Textbox(TimeRelatedConceptsForIdeaGeneration, lines=30)
                    gr.Textbox(Nonlinearprogressionideas, lines=30)
                    gr.Textbox(Adjectivebasedcombinationideatextsv2, lines=30)
                    gr.Textbox(Adjectivebasedcombinationideatexts, lines=30)
                gr.HTML("Media Critiques (eg. Youtube Rants) as Prompts to whole games as interactive explanation")
            with gr.Tab("Mermaid Diagrams"):
                with gr.Accordion("Mermaid Structures - click to open", open=False):
                    for key, item in examplemermaidconceptblendingstrutures.items():
                        gr.Code(item, label=key)

        with gr.Tab("Existing Config Crafting Progression"):
            with gr.Accordion("Test for config to gradio components order - ignore for now", open=False ):
                    gr.HTML("Placeholder for changing the render below to the one above for new config but with the ability to upload files aka the media field should be file uploader / dropdowns for all files that have been uploaded")
                    gr.Markdown("Asset Generation")
                    gr.HTML("Splits by new line - The idea here was to allow for saving the file ")
                    input_text = gr.Textbox(label="Input Text", lines=10)
                    output_group = gr.Group()
                    
                    @gr.render(inputs=input_text)
                    def update(text):
                        return show_elements(text)
            with gr.Tab("Quick Ways to evaluate current config"): 
                gr.HTML("Ask SOTA LLMs This prompt: <br> This config is for a basic text based game engine. I dont have any structural metrics to assess the quality of the config. What JSON things can we look at to see if it may be too bland for a person testing the game? <br> Then Paste the Config with the prompt")
                gr.HTML("""Original Claude 3.5 Sonnet Response snippets: <br>
Limited state variety: With only 13 states across 5 locations, the game might feel short and lacking in diversity. Consider adding more locations or states within existing locations.
Low average choices: An average of 1.92 choices per state might make the game feel linear. Increasing the number of choices in more states could improve player engagement.
Limited consequences: Only 3 states have consequences, which might make player choices feel less impactful. Adding more consequences could increase the sense of agency.
Short descriptions: The average description length of 13.15 words might not provide enough detail to immerse players. Consider expanding descriptions to create a richer narrative.
Lack of media: No states currently use media elements, which could make the game feel less engaging. Adding images, sound effects, or other media could enhance the player experience.
Limited narrative branching: While there are some loops and choices, the overall structure is relatively linear. Adding more branching paths could increase replayability and player interest.

To make the game less bland, consider:

Adding more states and locations
Increasing the number of choices in each state
Implementing more consequences for player actions
Expanding descriptions to create a richer narrative
Incorporating media elements
Creating more diverse paths through the game""")

    # import originalconfigatbeinningofthisspace, claude3_5_06072024configtips, tipsupdatedconfigatbeinningofthisspace from relatively_constant_variables

            with gr.Tab("Improvement of the default config"):
                gr.HTML("Example of how to advance a game config with LLM - end goal is to have automatic worflow that takes these considerations into account <br> Things missing from the game engine - Economics and Basic Politics (NPC affiliation)")
                gr.HTML("Suggestions from claude 3.5 on how to change config")
                display_originalconfigatbeinningofthisspace = originalconfigatbeinningofthisspace.replace(' ', '&nbsp;').replace('\n', '<br>') 
                display_claude3_5_06072024configtips = claude3_5_06072024configtips.replace(' ', '&nbsp;').replace('\n', '<br>')
                display_tipsupdatedconfigatbeinningofthisspace = tipsupdatedconfigatbeinningofthisspace.replace(' ', '&nbsp;').replace('\n', '<br>') 
                gr.HTML("""<div style="display: flex; justify-content: space-between; height: 900px; overflow: auto; ">
                    <div style="flex: 1; margin: 0 10px; padding: 20px;">
                        """ + display_originalconfigatbeinningofthisspace + """
                    </div>
                    <div style="flex: 1; margin: 0 10px; padding: 20px; width: 50%">
                        """ + display_claude3_5_06072024configtips + """
                    </div>
                    <div style="flex: 1; margin: 0 10px; padding: 20px;">
                        """ + display_tipsupdatedconfigatbeinningofthisspace + """
                    </div>
                </div>""")
        with gr.Tab("Themes and Topics"):
            gr.HTML("https://en.wikipedia.org/wiki/History#Periods https://en.wikipedia.org/wiki/Philosophy https://en.wikipedia.org/wiki/Moral_injury")
        with gr.Tab("Old Ideas to merge"):
            gr.HTML("Random Scenario / Song to 'full game' manual or auto is end goal ")
            gr.HTML("Componets (outside Code Support for Config): Decisions (and context explanation), Nested Sections, Media (Especially to affect decisions), Replayability (GTA and Tekken type mechanics in text form), Theme integration (Modified Varibles that affect UI or config order)") 
            gr.HTML("Existing Games eg. GTA Heists - Same Map with overlapping branching narratives, Battlefront - Elites amongst Commoners, Tekken Casino (one mistake = 1/2 or 1/3 of your Resources) and Turn based: 'Tactics' type nintendo games, Chess (and any other tile based game) ")
            gr.HTML("Existing Game Rules for text - Cyberpunk RED, ")
            gr.HTML("Community playthrough = Tally of players choices, Random item placed in a random location - first person to get it wins, Survival by location or characters met")
            gr.HTML("Some Kinds of game skeletons ideas - Timelines, Graph as State machine paths, Economy ecosystem")
            gr.HTML("One prompt to be used to test models - <br>Please make 10 python lists for the types of media files and their purposes in a game and then use those lists to random generate a timeline of 20 items when the function is called <br>Great next suggest ways to improve this function to create better timelines")
            with gr.Tab("Main areas of considerations"):
                gr.HTML("")
                with gr.Tab("Structural Inspirations"):
                    gr.HTML("GTA Heists - Replayability and stakes, Tekken - 2/3 mistakes = lost round ")
                    gr.HTML("Sports Scores, ")
                with gr.Tab("Themes"):
                    gr.HTML("")

        with gr.Tab("Current Engine Defects"):
            gr.HTML("All realtime events - Text still needs realtime as well")
            with gr.Tab("Inventory and Skill Support"):
                gr.HTML("Each decision affects Skills or inventory")
            with gr.Tab("NPC Support"):
                gr.HTML("Shared timeline that the player interfere with")
            with gr.Tab("Economics Support"):
                gr.HTML("Style Idea for a Basic Idea - Endless Economy (Tiny Tower as well) - Paperclip maximiser and inspirations - https://huggingface.co/spaces/osanseviero/TheMLGame")

    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("""Main End Goal is Rapid prototypes for education and training purposes eg. Degree of the future is game score <br><div style="width: 100%; text-align: center">A way to prototype basic non-3D parts of a game while trying to understand where models can streamline workflow</div>""")
            with gr.Accordion("Temporary Asset Management Assist - click to open", open=False):
                gr.HTML("Make Files and Text ideas for the field and paste <br>When Space is restarted it will clear - zip export and import will be added later")
                with gr.Accordion("Upload Files for config"):
                    gr.Markdown("# Media Saver and Explorer (refresh file list to be resolved - for now upload all files and reload the space - they persist as long as the space creator doesnt reset/update the space - will add manual clear options later)")
                    with gr.Tab("Upload Files"):
                        file_input = gr.File(label="Choose File to Upload")
                        save_output = gr.Textbox(label="Upload Status")

                    with gr.Tab("File Explorer"):
                        
                        file_explorer = gr.FileExplorer(
                            root_dir=SAVE_DIR,
                            glob="*.*",
                            file_count="single",
                            height=300,
                            label="Select a file to view"
                        )
                        with gr.Row():
                            refresh_button = gr.Button("Refresh", scale=1)
                            view_button = gr.Button("View File")
                        image_output = gr.Image(label="Image Output", type="pil")
                        audio_output = gr.Audio(label="Audio Output")
                        video_output = gr.Video(label="Video Output")
                        error_output = gr.Textbox(label="Error")

                    file_input.upload(
                        save_file,
                        inputs=file_input,
                        outputs=[save_output, file_explorer, file_input]
                    )

                    view_button.click(
                        view_file,
                        inputs=file_explorer,
                        outputs=[image_output, audio_output, video_output, error_output]
                    )

                    refresh_button.click(
                        refresh_file_explorer,
                        outputs=file_explorer
                    )

                    with gr.Tab("Batch add files to config"):
                        gr.HTML("Placeholder for Config parser to allow dropdowns for the media parts of the config inserted to make assigning media quick")
                        gr.HTML("Placeholder for Config parser to allow for current zerospace creation and placement into the config (LLM can give list of media but still have to figure out workflow from there)")

                    gr.HTML("Placeholder for clearing uploaded assets (public space and temporary persistence = sharing and space problems)")
            with gr.Accordion("My Previous Quick Config Attempts", open=False):
                for experimetal_config_name, experimetal_config in ExampleGameConfigs.items():
                    with gr.Tab(experimetal_config_name):    
                        gr.Code(json.dumps(experimetal_config, default=lambda o: o.__dict__, indent=2), label=experimetal_config_name) #str(experimetal_config)
        
        
        with gr.Column(scale=5):
            with gr.Tab("Test and Edit Config"): 
                with gr.Tab("Semi-Auto - Edit config while playing game"):
                    gr.HTML("-- Incomplete -- Current problem is passing values from rendered items to the config box <br>Need a way have dropdowns for the filelist and transitions eg. changing transitions must auto update choices <br>Config to components has hardcoded variables based on the auto gen so changes break it")
                    with gr.Column(scale=1):
                            gr.Markdown("# Debugging")
                            with gr.Row():
                                with gr.Column():
                                    ewpwaerror_box = gr.Textbox(label="Path Errors", lines=4, value=path_errors)
                                    
                                    
                                    with gr.Accordion("Generate a new config"):
                                        with gr.Accordion("Lists for config - only linear path for now", open=False):
                                            gr.Markdown("# Story and Timeline Generator")
                                            gr.Markdown("Click the button to generate a random timeline and story based on UI elements and story events. <br>Ask an LLM to use this to write a story around")
                                            #with gr.Row():
                                                #ewpgame_structure_output_text_with_media = gr.Code(language="json")
                                                #ewpgame_structure_output_text = gr.Code(language="json")
                                            with gr.Row():
                                                ewptimeline_output_with_assets = gr.Textbox(label="Timeline with Assets Considered", lines=20)
                                                #ewptimeline_output = gr.Textbox(label="Timeline (Order might be different for now)", lines=20)
                                                with gr.Column():
                                                    ewptimeline_output_text = gr.Textbox(label="Random Suggestions", lines=10)
                                                    ewptimeline_selected_lists_text = gr.Textbox(label="Selected Idea Lists for Inspiration", lines=2)
                                                ewpstory_output = gr.Textbox(label="Generated Story (Order might be different for now)", lines=20)
                                            with gr.Row():
                                                ewpgenerate_no_story_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of story timeline points")
                                                ewpgenerate_no_ui_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of ui timeline points")
                                            #ewpgenerate_no_media_timeline_points = gr.Slider(minimum=1, value=5, step=1, maximum=30, label="Choose the amount of media timeline points")
                                            #ewpgenerate_with_media_check = gr.Checkbox(label="Generate with media", value=True)
                                            with gr.Row():
                                                ewptimeline_num_lists_slider = gr.Slider(minimum=1, maximum=len(all_idea_lists), step=1, label="Number of Lists to Consider", value=3)
                                                ewptimeline_items_per_list_slider = gr.Slider(minimum=1, maximum=10, step=1, label="Items per List", value=3)
                                                ewptimeline_include_existing_games = gr.Checkbox(label="Include Existing Game Inspirations", value=True)
                                                ewptimeline_include_multiplayer = gr.Checkbox(label="Include Multiplayer Features", value=True)

                                        ewpgenerate_button = gr.Button("Generate Story and Timeline")

                                ewpwacustom_config = gr.Textbox(label="Custom Configuration (JSON)", lines=4) #value=json.dumps(all_states, default=lambda o: o.__dict__, indent=2), lines=4) #Commented out due to initial load issues
                            ewpwacustom_configbtn = gr.Button("Load Custom Config")
                    
                    with gr.Row():
                        with gr.Column(scale=1):
                            with gr.Group():
                                gr.Markdown("# Text-based Adventure Game")

                                ewpwadescription = gr.Textbox(label="Current Situation", lines=4, value=initgameinfo[0])
                                ewpwamediabool = gr.State(value=True)
                                ewpwamedia = gr.State(["testmedia/Stable Audio - Raindrops, output.wav"])

                                @gr.render(inputs=ewpwamedia)
                                def dynamic_with_media(media_items):
                                    print(media_items)
                                    with gr.Group() as ewpwamediagrouping: 
                                        gr.HTML("Placeholder to load all media tests - still need to test clearing media on ")
                                        if media_items == []:
                                            gr.Markdown("No media items to display.")
                                        else:
                                            for item in media_items:
                                                render = create_media_component(item)
                                    
                                    return ewpwamediagrouping
                                
                                ewpwachoices = gr.Radio(label="Your Choices", choices=initgameinfo[1])
                                ewpwasubmit_btn = gr.Button("Make Choice")
                                ewpwagame_log = gr.Textbox(label="Game Log", lines=20, value=initgameinfo[2])
                                ewpwagame_session = gr.State(value=initgameinfo[3])
                                ewpwasubmit_btn.click(
                                    make_choice,
                                    inputs=[ewpwachoices, ewpwagame_session, ewpwamediabool],
                                    outputs=[ewpwadescription, ewpwachoices, ewpwagame_log, ewpwagame_session, ewpwamedia]
                                )

                                ewpwacustom_configbtn.click(
                                    load_game,
                                    inputs=[ewpwacustom_config, ewpwamediabool],
                                    outputs=[ewpwaerror_box, ewpwagame_log, ewpwadescription, ewpwachoices, ewpwacustom_config, ewpwagame_session, ewpwamedia]
                                )
                        with gr.Column(scale=1):
                            @gr.render(inputs=ewpwacustom_config) #ewpgame_structure_output_text_with_media
                            def update(ewpwacustom_config):
                                return show_elements_json_input(ewpwacustom_config)
                            
                            ewpgenerate_button.click(generate_story_and_timeline, inputs=[ewpgenerate_no_story_timeline_points, ewpgenerate_no_ui_timeline_points, ewptimeline_num_lists_slider, ewptimeline_items_per_list_slider, ewptimeline_include_existing_games, ewptimeline_include_multiplayer], outputs=[ewptimeline_output_with_assets, ewpstory_output, ewpwacustom_config, ewptimeline_output_text, ewptimeline_selected_lists_text])  #ewptimeline_output_with_assets, ewptimeline_output, ewpstory_output, ewpwacustom_config, ewpgame_structure_output_text]) #ewpgame_structure_output_text_with_media, ewpgame_structure_output_text])

                with gr.Tab("Manual - Config With Assets"):
                    gr.HTML("Placeholder as not complete yet (3D not supported, and time (esp need for audio)")
                    with gr.Row():
                        with gr.Column(scale=2):
                            gr.Markdown("# Text-based Adventure Game")

                            wadescription = gr.Textbox(label="Current Situation", lines=4, value=initgameinfo[0])
                            wamediabool = gr.State(value=True)
                            wamedia = gr.State(["testmedia/Stable Audio - Raindrops, output.wav"])

                            @gr.render(inputs=wamedia)
                            def dynamic_with_media(media_items):
                                print(media_items)
                                with gr.Group() as wamediagrouping: 
                                    gr.HTML("Placeholder to load all media tests - still need to test clearing media on ")
                                    if media_items == []:
                                        gr.Markdown("No media items to display.")
                                    else:
                                        for item in media_items:
                                            render = create_media_component(item)
                                
                                return wamediagrouping
                            
                            wachoices = gr.Radio(label="Your Choices", choices=initgameinfo[1])
                            wasubmit_btn = gr.Button("Make Choice")
                            wagame_log = gr.Textbox(label="Game Log", lines=20, value=initgameinfo[2])
                            wagame_session = gr.State(value=initgameinfo[3])
                            wasubmit_btn.click(
                                make_choice,
                                inputs=[wachoices, wagame_session, wamediabool],
                                outputs=[wadescription, wachoices, wagame_log, wagame_session, wamedia]
                            )
                        with gr.Column(scale=1):
                            gr.Markdown("# Debugging")
                            waerror_box = gr.Textbox(label="Path Errors", lines=4, value=path_errors)
                            with gr.Accordion("Config (Game Spoiler and Example for llm to remix)", open=False):
                                wacustom_config = gr.Textbox(label="Custom Configuration (JSON)", value=json.dumps(all_states, default=lambda o: o.__dict__, indent=2), lines=8)
                                wacustom_configbtn = gr.Button("Load Custom Config")

                                wacustom_configbtn.click(
                                    load_game,
                                    inputs=[wacustom_config, wamediabool],
                                    outputs=[waerror_box, wagame_log, wadescription, wachoices, wacustom_config, wagame_session, wamedia]
                                )


            with gr.Tab("HF - Asset Generation Considerations"):
                with gr.Accordion("Some Idea / Inspiration Sources / Demos", open=False):
                    with gr.Row():
                        gr.HTML("Licenses for the spaces still to be evaluated - June 2024 <br> Users to follow with cool spaces - <br>https://huggingface.co/osanseviero - https://huggingface.co/spaces/osanseviero/TheMLGame <br>https://huggingface.co/jbilcke-hf <br>https://huggingface.co/dylanebert <br>https://huggingface.co/fffiloni <br>https://huggingface.co/artificialguybr <br>https://huggingface.co/radames <br>https://huggingface.co/multimodalart, ")
                        gr.HTML("Some Youtube Channels to keep up with updates <br><br>https://www.youtube.com/@lev-selector <br>https://www.youtube.com/@fahdmirza/videos")
                        gr.HTML("Social media that shows possiblities <br><br>https://www.reddit.com/r/aivideo/ https://www.reddit.com/r/StableDiffusion/ https://www.reddit.com/r/midjourney/ https://x.com/blizaine https://www.reddit.com/r/singularity/comments/1ead7vp/not_sure_if_this_is_the_right_place_to_post_but_i/ https://www.reddit.com/r/singularity/comments/1ebpra6/the_big_reveal_book_trailer_made_with_runway_gen3/ https://www.reddit.com/r/LocalLLaMA/comments/1e3aboz/folks_with_one_24gb_gpu_you_can_use_an_llm_sdxl/")
                gr.HTML("Currently - need to create then save to pc then reupload to use here in test tab")
                gr.HTML("Whole game engine in a space? - https://huggingface.co/spaces/thomwolf/test_godot_editor <br><br> https://huggingface.co/godot-demo https://huggingface.co/spaces/thomwolf/test_godot")
                with gr.Tab("Text-based"):
                    gr.HTML("Some Benchmark Leaderboards - https://huggingface.co/spaces/allenai/ZebraLogic | https://huggingface.co/spaces/allenai/WildBench https://scale.com/leaderboard https://livebench.ai")
                    with gr.Accordion("LLM HF Spaces/Sites (Click Here to Open) - Ask for a story and suggestions based on the autoconfig", open=False):
                        with gr.Row():
                            linktochat = gr.Dropdown(choices=["--Function Calling--", "https://groq-demo-groq-tool-use.hf.space",
                                                            "--Multiple Models--", "https://lmsys-gpt-4o-mini-battles.hf.space", "https://labs.perplexity.ai/", "https://chat.lmsys.org", "https://sdk.vercel.ai/docs", "https://cyzgab-catch-me-if-you-can.hf.space",
                                                            "--70B and above--", "https://llamameta-llama3-1-405b.static.hf.space", "https://qwen-qwen-max-0428.hf.space", "https://cohereforai-c4ai-command-r-plus.hf.space", "https://qwen-qwen1-5-110b-chat-demo.hf.space", "https://snowflake-snowflake-arctic-st-demo.hf.space", "https://databricks-dbrx-instruct.hf.space", "https://qwen-qwen1-5-72b-chat.hf.space",
                                                            "--20B and above--", "https://gokaygokay-gemma-2-llamacpp.hf.space", "https://01-ai-yi-34b-chat.hf.space", "https://cohereforai-c4ai-command-r-v01.hf.space", "https://ehristoforu-mixtral-46-7b-chat.hf.space", "https://mosaicml-mpt-30b-chat.hf.space",
                                                            "--7B and above--", "https://vilarin-mistral-nemo.hf.space", "https://arcee-ai-arcee-scribe.hf.space", "https://vilarin-llama-3-1-8b-instruct.hf.space", "https://ysharma-chat-with-meta-llama3-8b.hf.space", "https://qwen-qwen1-5-moe-a2-7b-chat-demo.hf.space", "https://deepseek-ai-deepseek-coder-7b-instruct.hf.space", "https://osanseviero-mistral-super-fast.hf.space", "https://artificialguybr-qwen-14b-chat-demo.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space",
                                                            "--1B and above--", "https://huggingface.co/spaces/eswardivi/Phi-3-mini-128k-instruct", "https://eswardivi-phi-3-mini-4k-instruct.hf.space", "https://stabilityai-stablelm-2-1-6b-zephyr.hf.space",
                                                            "--under 1B--", "unorganised", "https://ysharma-zephyr-playground.hf.space", "https://huggingfaceh4-zephyr-chat.hf.space",  "https://ysharma-explore-llamav2-with-tgi.hf.space",  "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left. For lymsys / chat arena copy the link and use a new tab")
                        chatspace = gr.HTML("Chat Space Chosen will load here")
                        chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)
                    with gr.Tab("NPCS"):
                        gr.HTML("For ideas on NPCS check: https://lifearchitect.ai/leta/, ")
                    with gr.Tab("Save files"):
                        gr.HTML("For Dynamic events overnight or when player is not active what can LLMS edit? <br><br>eg. Waiting for a letter from a random npc can be decided by the llm <br>eg. Improved Stats on certain days (eg. bitrthday) <br>Privacy <br>User Directed DLC eg. Rockstar Editor with local llm guide")
                        gr.HTML("Some ideas - In game websites eg. GTA esp stock markets, news; ")
                        gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/nvidia/Nemotron-4-340B-Instruct (Purpose is supposed to be synthetic data generation), https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp ")
                        gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist (9b and under) <br>initial floor for testing can be https://huggingface.co/spaces/Qwen/Qwen2-0.5B-Instruct, https://huggingface.co/spaces/Qwen/Qwen2-1.5b-instruct-demo, https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr, https://huggingface.co/spaces/IndexTeam/Index-1.9B, https://huggingface.co/microsoft/Phi-3-mini-4k-instruct")
                        with gr.Tab("Diagrams"):
                            gr.HTML("Claude 3.5 sonnet is very good with mermaid graphs - can used for maps, situational explanations")
                        with gr.Tab("Maths"):
                            gr.HTML("https://huggingface.co/spaces/AI-MO/math-olympiad-solver")

                with gr.Tab("Media Understanding"):
                    gr.HTML("NPC Response Engines? Camera, Shopkeeper, Companion, Enemies, etc.")
                    with gr.Accordion("Media understanding model Spaces/Sites (Click Here to Open)", open=False):
                        with gr.Row():
                            linktomediaunderstandingspace = gr.Dropdown(choices=[ "--Weak Audio Understanding = Audio to text, Weak Video Understanding = Video to Image to Image Understanding", "https://skalskip-florence-2-video.hf.space", "https://kingnish-opengpt-4o.hf.space",
                                                                                    "--Video Understanding--", "https://ivgsz-flash-vstream-demo.hf.space",
                                                                                    "--Image Understanding--", "https://gokaygokay-florence-2.hf.space", "https://vilarin-vl-chatbox.hf.space", "https://qnguyen3-nanollava.hf.space", "https://skalskip-better-florence-2.hf.space", "https://merve-llava-interleave.hf.space", 
                                                                                    "--Img-to-img Understanding--", "https://merve-draw-to-search-art.hf.space", 
                                                                                    "--Image Understanding without conversation--", "https://epfl-vilab-4m.hf.space", "https://epfl-vilab-multimae.hf.space", "https://gokaygokay-sd3-long-captioner.hf.space" ],
                                                            label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            mediaunderstandingspacebtn = gr.Button("Use the chosen URL to load interface with a media understanding space")
                        mediaunderstandingspace = gr.HTML("Mdeia Understanding Space Chosen will load here")
                        mediaunderstandingspacebtn.click(display_website, inputs=linktomediaunderstandingspace, outputs=mediaunderstandingspace)
                    gr.HTML("Image Caption =  https://huggingface.co/spaces/microsoft/Promptist (Prompt Lengthen) ")


                with gr.Tab("Images"):
                    with gr.Accordion("Image Gen or Animation HF Spaces/Sites (Click Here to Open) - Have to download and upload at the the top", open=False):
                        # with gr.Tabs("General"):
                        with gr.Row():
                            linktoimagegen = gr.Dropdown(choices=["--Text-Interleaved--", "https://ethanchern-anole.hf.space",
                                                                    "--Hidden Image--", "https://ap123-illusiondiffusion.hf.space",
                                                                    "--Panorama--", "https://gokaygokay-360panoimage.hf.space",
                                                                    "--General--", "https://pixart-alpha-pixart-sigma.hf.space", "https://stabilityai-stable-diffusion-3-medium.hf.space", "https://prodia-sdxl-stable-diffusion-xl.hf.space", "https://prodia-fast-stable-diffusion.hf.space", "https://bytedance-hyper-sdxl-1step-t2i.hf.space",  "https://multimodalart-cosxl.hf.space", "https://cagliostrolab-animagine-xl-3-1.hf.space", "https://stabilityai-stable-diffusion.hf.space",
                                                                    "--Speed--", "https://radames-real-time-text-to-image-sdxl-lightning.hf.space", "https://ap123-sdxl-lightning.hf.space",
                                                                    "--LORA Support--", "https://artificialguybr-artificialguybr-demo-lora.hf.space", "https://artificialguybr-studio-ghibli-lora-sdxl.hf.space", "https://artificialguybr-pixel-art-generator.hf.space", "https://fffiloni-sdxl-control-loras.hf.space", "https://ehristoforu-dalle-3-xl-lora-v2.hf.space",
                                                                    "--Image to Image--", "https://gokaygokay-kolorsplusplus.hf.space", "https://lllyasviel-ic-light.hf.space", "https://gparmar-img2img-turbo-sketch.hf.space",
                                                                    "--Upscaler--", "https://gokaygokay-tile-upscaler.hf.space",
                                                                    "--Control of Pose--", "https://instantx-instantid.hf.space", "https://modelscope-transferanything.hf.space", "https://okaris-omni-zero.hf.space"
                                                                    "--Control of Shapes--", "https://linoyts-scribble-sdxl-flash.hf.space",
                                                                    "--Control of Text--", ""
                                                                    "--Foreign Language Input--", "https://gokaygokay-kolors.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            imagegenspacebtn = gr.Button("Use the chosen URL to load interface with a image generation model")
                    
                        imagegenspace = gr.HTML("Image Space Chosen will load here")
                        imagegenspacebtn.click(display_website, inputs=linktoimagegen, outputs=imagegenspace)
                    
                    linkstobecollectednoembed = "https://artgan-diffusion-api.hf.space", "https://multimodalart-stable-cascade.hf.space", "https://google-sdxl.hf.space", "https://visionmaze-magic-me.hf.space", "https://segmind-segmind-stable-diffusion.hf.space", "https://simianluo-latent-consistency-model.hf.space",
                    gr.HTML("Concept Art, UI elements, Static/3D Characters, Environments and Objects")
                    gr.HTML("Images Generation General (3rd Party) =  https://www.craiyon.com/")
                    gr.HTML("Images Generation Posters with text - https://huggingface.co/spaces/GlyphByT5/Glyph-SDXL-v2")
                    gr.HTML("SVG Generation = Coding models / SOTA LLM ")
                    gr.HTML("Images Generation - Upscaling - https://huggingface.co/spaces/gokaygokay/Tile-Upscaler")
                    gr.HTML("Vision Models for descriptions <br> https://huggingface.co/spaces/gokaygokay/Florence-2 <br>https://huggingface.co/spaces/vilarin/VL-Chatbox - glm 4v 9b <br>")
                    gr.HTML("Upscalers (save data transfer costs? highly detailed characters?) - https://huggingface.co/spaces/gokaygokay/AuraSR")
                    gr.HTML("Placeholder for huggingface spaces that can assist ")
                    gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

                with gr.Tab("Video"):
                    with gr.Accordion("Video Spaces/Sites (Click Here to Open)", open=False):
                        with gr.Row():
                            linktovideogenspace = gr.Dropdown(choices=["--Genral--", "https://zheyangqin-vader.hf.space", "https://kadirnar-open-sora.hf.space",
                                                                    "--Talking Portrait--", "https://fffiloni-tts-hallo-talking-portrait.hf.space",  
                                                                    "--Gif / ImgtoImg based video--", "https://wangfuyun-animatelcm-svd.hf.space", "https://bytedance-animatediff-lightning.hf.space", "https://wangfuyun-animatelcm.hf.space", "https://guoyww-animatediff.hf.space",], 
                                                            label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            videogenspacebtn = gr.Button("Use the chosen URL to load interface with video generation")
                        videogenspace = gr.HTML("Video Space Chosen will load here")
                        videogenspacebtn.click(display_website, inputs=linktovideogenspace, outputs=videogenspace)

                    gr.HTML("Cutscenes, Tutorials, Trailers")
                    gr.HTML("Portrait Video eg. Solo Taking NPC - https://huggingface.co/spaces/fffiloni/tts-hallo-talking-portrait (Image + Audio and combination)  https://huggingface.co/spaces/KwaiVGI/LivePortrait (Non verbal communication eg. in a library, when running from a pursuer)")
                    gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/KingNish/Instant-Video, https://huggingface.co/spaces/multimodalart/stable-video-diffusion, https://huggingface.co/spaces/multimodalart/stable-video-diffusion")
                    gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
                    gr.HTML("3rd Party / Closed Source - https://runwayml.com/ <br>")
                    with gr.Tab("Animations (for lower resource use)"):
                        gr.HTML("Characters, Environments, Objects")
                        gr.HTML("Placeholder for huggingface spaces that can assist - image as 3d object in video https://huggingface.co/spaces/ashawkey/LGM")
                        gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

                with gr.Tab("Audio"):
                    with gr.Accordion("Audio Spaces/Sites (Click Here to Open)", open=False):
                        with gr.Row():
                            linktoaudiogenspace = gr.Dropdown(choices=["General", "https://artificialguybr-stable-audio-open-zero.hf.space", "",
                                                                        "--Talking Portrait--","https://fffiloni-tts-hallo-talking-portrait.hf.space"], 
                                                            label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            audiogenspacebtn = gr.Button("Use the chosen URL to load interface with audio generation")
                        audiogenspace = gr.HTML("Audio Space Chosen will load here")
                        audiogenspacebtn.click(display_website, inputs=linktoaudiogenspace, outputs=audiogenspace)
                    gr.HTML("Music - Background, Interactive, Cutscene, Menu <br>Sound Effects - Environment, character, action (environmental triggered by user eg. gun), UI <br>Speech - Dialouge, narration, voiceover <br>The new render function means the Config can be made and iframe/api functions can be ordered as neccessary based on the part of the config that needs it to streamline workflows based on current state of config ")
                    gr.HTML("Placeholder for huggingface spaces that can assist")
                    gr.HTML("Audio Sound Effects - https://huggingface.co/spaces/artificialguybr/Stable-Audio-Open-Zero")
                    gr.HTML("Voices - Voice clone eg. actors part of your project - https://huggingface.co/spaces/tonyassi/voice-clone")
                    gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
                    gr.HTML("3rd Party / Closed Source - https://suno.com/ <br>https://www.udio.com/")

                with gr.Tab("3D"):
                    with gr.Accordion("3D Model Spaces/Sites (Click Here to Open)", open=False):
                        with gr.Row():
                            linktoThreedModel = gr.Dropdown(choices=["--Image prompt--", "https://vast-ai-charactergen.hf.space"
                                                                    "--Video prompt--", "https://facebook-vggsfm.hf.space",
                                                                    "--Text prompt--", "https://wuvin-unique3d.hf.space", "https://stabilityai-triposr.hf.space", "https://hysts-shap-e.hf.space", "https://tencentarc-instantmesh.hf.space", "https://ashawkey-lgm.hf.space", "https://dylanebert-lgm-mini.hf.space", "https://dylanebert-splat-to-mesh.hf.space", "https://dylanebert-multi-view-diffusion.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            ThreedModelspacebtn = gr.Button("Use the chosen URL to load interface with a 3D model")
                        ThreedModelspace = gr.HTML("3D Space Chosen will load here")
                        ThreedModelspacebtn.click(display_website, inputs=linktoThreedModel, outputs=ThreedModelspace)
                    gr.HTML("Characters, Environments, Objects")
                    gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/dylanebert/3d-arena")
                    gr.HTML("Closed Source - https://www.meshy.ai/")

                with gr.Tab("Fonts"):
                    gr.HTML("Style of whole game, or locations, or characters")
                    gr.HTML("Placeholder for huggingface spaces that can assist - there was a space that could make letter into pictures based on the prompt but I cant find it now")
                    gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
                
                with gr.Tab("Shaders and related"):
                    with gr.Accordion("'Special Effects' Spaces/Sites (Click Here to Open)", open=False):
                        with gr.Row():
                            linktospecialeffectsgenspace = gr.Dropdown(choices=["--Distorted Image--", "https://epfl-vilab-4m.hf.space", "https://epfl-vilab-multimae.hf.space"], 
                                                            label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                            specialeffectsgenspacebtn = gr.Button("Use the chosen URL to load interface with special effects generation")
                        specialeffectsgenspace = gr.HTML("Special Effects Space Chosen will load here")
                        specialeffectsgenspacebtn.click(display_website, inputs=linktospecialeffectsgenspace, outputs=specialeffectsgenspace)
                    gr.HTML("Any output that is not understood by the common person can be used as special effects eg. depth map filters on images etc.")
                    gr.HTML("Post-processing Effects, material effects, Particle systems, visual feedback")
                    gr.HTML("Visual Effects - eg. explosion can turn all items white for a moment, losing conciousness blurs whole screen")
                    gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

            with gr.Tab("3rd Party - Asset Generation"):
                gr.HTML("Image - https://www.midjourney.com/showcase")
                gr.HTML("Audio - https://www.udio.com/home")
                gr.HTML("Video - https://klingai.com/")

            with gr.Tab("Basic Game Engine Mechanics"):
                gr.HTML("Placeholder for explanations of Player and Game Session")
                with gr.Tab("LLM play testing"):
                    gr.HTML("LLM can read the contents in full and give critiques but they can also play the game if you make a api interface - gradio allows this in the form of gradio client but you can also reroute the user inputs to function calling")

            with gr.Tab("Custom JS Config Creator"):
                gr.HTML("-- Incomplete -- Companion Space for zerogpu / client api workflow planning for a way to send a zip to the Basic Game Engine at the bottom of https://huggingface.co/spaces/KwabsHug/TestSvelteStatic (Also to test how much can be done majority on cpu)")
                with gr.Tab("Simple Config Creator"):
                    inventory_items = gr.State([])
                    skills_items = gr.State([])
                    objectives_items = gr.State([])
                    targets_items = gr.State([])

                    with gr.Tabs():
                        with gr.TabItem("Inventory"):
                            inventory_type = gr.Textbox(label="Type")
                            inventory_name = gr.Textbox(label="Name")
                            inventory_description = gr.Textbox(label="Description")
                            add_inventory = gr.Button("Add Inventory Item")
                            inventory_textbox = gr.JSON(label="Inventory Items", value=[])

                        with gr.TabItem("Skills"):
                            skills_branch = gr.Textbox(label="Branch")
                            skills_name = gr.Textbox(label="Name")
                            skills_learned = gr.Dropdown(choices=["True", "False"], label="Learned")
                            add_skill_button = gr.Button("Add Skill")
                            skills_textbox = gr.JSON(label="Skills", value=[])

                        with gr.TabItem("Objectives"):
                            objectives_id = gr.Textbox(label="ID")
                            objectives_name = gr.Textbox(label="Name")
                            objectives_complete = gr.Dropdown(choices=["True", "False"], label="Complete")
                            add_objective_button = gr.Button("Add Objective")
                            objectives_textbox = gr.JSON(label="Objectives", value=[])

                        with gr.TabItem("Targets"):
                            targets_name = gr.Textbox(label="Name")
                            targets_x = gr.Textbox(label="X Coordinate")
                            targets_y = gr.Textbox(label="Y Coordinate")
                            targets_collisionType = gr.Textbox(label="Collision Type")
                            targets_collisiontext = gr.Textbox(label="Collision Text")
                            add_target_button = gr.Button("Add Target")
                            targets_textbox = gr.JSON(label="Targets", value=[])

                        with gr.TabItem("Placeholders for Modal Target"):
                            gr.HTML("Placeholder")

                        with gr.TabItem("Placeholders for State Machine Modal Target"):
                            gr.HTML("Placeholder")

                        with gr.TabItem("Placeholders for Background"):
                            gr.HTML("Placeholder")

                    config_output = gr.JSON(label="Updated Configuration")

                    @gr.render(inputs=[inventory_items, skills_items, objectives_items, targets_items]) #, outputs=config_output)
                    def aggregate_config(inventory, skills, objectives, targets):
                        config = default_config.copy()
                        config['inventory'] = inventory
                        config['skills'] = skills
                        config['objectives'] = objectives
                        config['targets'] = targets
                        return config

                    add_inventory.click(add_inventory_item, inputs=[inventory_items, inventory_type, inventory_name, inventory_description], outputs=inventory_textbox)
                    add_inventory.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

                    add_skill_button.click(add_skill, inputs=[skills_items, skills_branch, skills_name, skills_learned], outputs=skills_textbox)
                    add_skill_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

                    add_objective_button.click(add_objective, inputs=[objectives_items, objectives_id, objectives_name, objectives_complete], outputs=objectives_textbox)
                    add_objective_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

                    add_target_button.click(add_target, inputs=[targets_items, targets_name, targets_x, targets_y, targets_collisionType, targets_collisiontext], outputs=targets_textbox)
                    add_target_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)
                
                with gr.Tab("Advanced Config Creator"):
                    gr.HTML("Config with More than text and images")
                            
            with gr.Tab("LLM/Robotics as custom controllers"):
                gr.HTML("Controls changed the scope of the game eg. mouse vs keyboard vs console controller vs remote vs touch screen <br>LLM can be vision/surveilance based controler (eg. MGS/GTA camera gauged by an actual camera in real life) or it can be a companion (offline/off console game progrssion ideas)")
                gr.HTML("https://github.com/Shaka-Labs/ACT $250 imitation learning/teleoperation - eg. a win loss result alert / NPC 'scout' telling you go or stay")
                gr.HTML("https://huggingface.co/posts/thomwolf/809364796644704")
                gr.HTML("Robotics - https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/ https://huggingface.co/lerobot https://github.com/tonyzhaozh/aloha https://github.com/Shaka-Labs/ACT https://github.com/OpenTeleVision/TeleVision https://www.stereolabs.com/ ")
            with gr.Tab("Existing Game Developemnt Resources"):
                gr.HTML("https://develop.games/#nav-tools-engine ")
            with gr.Tab("Other Considerations"):
                with gr.Tab("General"):
                    gr.HTML("https://huggingface.co/docs/hub/api - daily papers is an endpoint so you can turn paper abstract into games with the help of LLM")

                    gr.HTML("Experiment for https://huggingface.co/spaces/ysharma/open-interpreter/blob/main/app.py inplementation with gradio client api")

                    gr.HTML("https://huggingface.co/spaces/HuggingFaceTB/SmolLM-135M-Instruct-WebGPU")

                    gr.HTML("Useful Spaces and links: https://huggingface.co/spaces/artificialguybr/Stable-Audio-Open-Zero https://huggingface.co/spaces/stabilityai/TripoSR https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD https://huggingface.co/spaces/multimodalart/face-to-all https://huggingface.co/spaces/facebook/MusicGen https://huggingface.co/spaces/Doubiiu/tooncrafter")
                    
                    gr.HTML("langchain docs as awareness for alot of the integration use cases and providers that are possible - https://python.langchain.com/v0.2/docs/integrations/tools/")

                    gr.HTML("https://huggingface.co/spaces/linoyts/scribble-sdxl-flash as map planner")

                    gr.HTML("---------------------------------------Gameplay Ideas-------------------------------")
                    gr.HTML("https://huggingface.co/spaces/Lin-Chen/ShareCaptioner-Video - game use example police questions a event with multiple eye witnesses needs to give as close to the caption description to win")
                with gr.Tab("State management through huggingface?"):
                    gr.HTML("Huggingface as the login provider? - https://huggingface.co/spaces/Wauplin/gradio-user-history/tree/main https://huggingface.co/spaces/AP123/IllusionDiffusion https://huggingface.co/docs/hub/en/spaces-oauth https://huggingface.co/docs/hub/en/oauth, persistent storage - https://huggingface.co/docs/hub/en/spaces-storage")
                with gr.Tab("Finetuning options"):
                    gr.HTML("https://docs.mistral.ai/guides/finetuning/")
                    gr.HTML("Unsloth and Colab? - https://github.com/unslothai/unsloth https://huggingface.co/unsloth <br>Mistral Nemo Base - https://huggingface.co/unsloth/Mistral-Nemo-Base-2407 - https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing <br>Llama 3 8B https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit")
                    gr.HTML("Price - https://openpipe.ai/pricing")
                with gr.Tab("Backend and/or Hosting?"):
                    gr.HTML("Deployemnt options - https://huggingface.co/SpacesExamples", "https://huggingface.co/templates")
                    gr.HTML("Prototyping and freemium <br>free api <br>HF Pro subscription")
                    gr.HTML("GPU (Data privacy) = No Rate limits? - https://replicate.com/pricing, https://lambdalabs.com/service/gpu-cloud https://huggingface.co/pricing#endpoints https://tensordock.com/cloud-gpus", "https://massedcompute.com/home/pricing/" )
                    gr.HTML("Speed - Groq, SambaNova, https://www.etched.com/announcing-etched ")
                    gr.HTML("Price - Coding - https://aider.chat/docs/leaderboards/ -  https://www.deepseek.com/ 0.3 per million - is this per token or chinese character as that means converting code to chinese if possible can save api cost?")
                    gr.HTML("Llama 3.1 405B - https://ai.meta.com/blog/meta-llama-3-1/ https://replicate.com/meta/meta-llama-3.1-405b-instruct https://fireworks.ai/pricing https://www.ibm.com/products/watsonx-ai/foundation-models")
                with gr.Tab("Some Interesting Git Repos"):
                    gr.HTML("https://github.com/NVIDIA/Megatron-LM https://github.com/OpenGVLab/EfficientQAT https://github.com/evintunador/minLlama3/blob/main/model.py https://github.com/evintunador/micro-GPT-sandbox")
                with gr.Tab("Old Ideas"):
                    gr.HTML("""<div style="width: 100%; text-align: center">Main ideas for this space is (June 2024) (Custom component planning?):</div>
                    <div style="display: flex; justify-content: center; margin-bottom: 20px; align-items: center;">
                        <div style="width: 20%; text-align: center">We can generate almost any media data and more </div>
                        <div style="width: 20%; text-align: center">A program exist around data </div>
                        <div style="width: 20%; text-align: center">Time moves in a straight so all considerations are flattend by the nature of time </div>
                        <div style="width: 20%; text-align: center">llms good at short questions </div>
                        <div style="width: 20%; text-align: center">HF + Gradio allows for api use so this my prototype tool for tool use test</div>
                    </div>""")

            with gr.Tab("Asset loading test"):
                gr.HTML("SDXL (linoyts/scribble-sdxl-flash), SVD and Stable Audio used for the test assets (For commercial use need a licence) <br>testmedia/")
                with gr.Row():
                    gr.Image(value="testmedia/Flash scribble SDXL - random squiggles as roads.webp")
                    gr.Video(value="testmedia/SVD - random squiggles as roads video 004484.mp4")
                    gr.Audio(value="testmedia/Stable Audio - Raindrops, output.wav")
                gr.HTML(TestmedialoadinHTML) # imported from relatively_constant_variables
            

demo.queue().launch()