LegendaryToe commited on
Commit
c07c602
·
1 Parent(s): 5e6328b
Files changed (1) hide show
  1. app.py +14 -12
app.py CHANGED
@@ -41,21 +41,23 @@
41
  # for entity in entities:
42
  # st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")
43
 
44
-
45
  import streamlit as st
46
  from transformers import pipeline
47
 
48
- # Load CodeBERT model as a feature extractor
49
- # (Note: You may need to adjust the task if using CodeBERT for other specific purposes)
50
- codebert = pipeline("feature-extraction", model="microsoft/codebert-base")
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- st.title('CodeBERT Feature Extractor')
53
 
54
- # User input for text
55
- user_input = st.text_area("Enter code or text to extract features:", "SELECT * FROM users;")
56
 
57
- # Extract features
58
- if st.button('Extract Features'):
59
- features = codebert(user_input)
60
- # Display extracted features (example: show size of feature vector for demonstration)
61
- st.write('Number of features extracted:', len(features[0][0]))
 
41
  # for entity in entities:
42
  # st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")
43
 
 
44
  import streamlit as st
45
  from transformers import pipeline
46
 
47
+ # Load a smaller LLaMA model with permission to run custom code
48
+ text_generator = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
49
+
50
+ st.title('General Query Answerer')
51
+
52
+ # User input for a general question
53
+ user_query = st.text_area("Enter your question:", "Name all 50 US states.")
54
+
55
+ # Generate answer
56
+ if st.button('Answer Question'):
57
+ answer = text_generator(user_query, max_length=150)[0]['generated_text']
58
+ # Display the answer
59
+ st.write('Answer:', answer)
60
+
61
 
 
62
 
 
 
63