leoxing1996
add midas manually
b18cfd3

# MiDaS for ROS1 by using LibTorch in C++

Requirements

  • Ubuntu 17.10 / 18.04 / 20.04, Debian Stretch
  • ROS Melodic for Ubuntu (17.10 / 18.04) / Debian Stretch, ROS Noetic for Ubuntu 20.04
  • C++11
  • LibTorch >= 1.6

Quick Start with a MiDaS Example

MiDaS is a neural network to compute depth from a single image.

  • input from image_topic: sensor_msgs/Image - RGB8 image with any shape
  • output to midas_topic: sensor_msgs/Image - TYPE_32FC1 inverse relative depth maps in range [0 - 255] with original size and channels=1

Install Dependecies

  • install ROS Melodic for Ubuntu 17.10 / 18.04:
wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_melodic_ubuntu_17_18.sh
./install_ros_melodic_ubuntu_17_18.sh

or Noetic for Ubuntu 20.04:

wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_noetic_ubuntu_20.sh
./install_ros_noetic_ubuntu_20.sh
  • install LibTorch 1.7 with CUDA 11.0:

On Jetson (ARM):

wget https://nvidia.box.com/shared/static/wa34qwrwtk9njtyarwt5nvo6imenfy26.whl -O torch-1.7.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev 
pip3 install Cython
pip3 install numpy torch-1.7.0-cp36-cp36m-linux_aarch64.whl

Or compile LibTorch from source: https://github.com/pytorch/pytorch#from-source

On Linux (x86_64):

cd ~/
wget https://download.pytorch.org/libtorch/cu110/libtorch-cxx11-abi-shared-with-deps-1.7.0%2Bcu110.zip
unzip libtorch-cxx11-abi-shared-with-deps-1.7.0+cu110.zip
  • create symlink for OpenCV:
sudo ln -s /usr/include/opencv4 /usr/include/opencv
  • download and install MiDaS:
source ~/.bashrc
cd ~/
mkdir catkin_ws
cd catkin_ws
git clone https://github.com/intel-isl/MiDaS
mkdir src
cp -r MiDaS/ros/* src

chmod +x src/additions/*.sh
chmod +x src/*.sh
chmod +x src/midas_cpp/scripts/*.py
cp src/additions/do_catkin_make.sh ./do_catkin_make.sh
./do_catkin_make.sh
./src/additions/downloads.sh

Usage

  • run only midas node: ~/catkin_ws/src/launch_midas_cpp.sh

Test

  • Test - capture video and show result in the window:

    • place any test.mp4 video file to the directory ~/catkin_ws/src/
    • run midas node: ~/catkin_ws/src/launch_midas_cpp.sh
    • run test nodes in another terminal: cd ~/catkin_ws/src && ./run_talker_listener_test.sh and wait 30 seconds

    (to use Python 2, run command sed -i 's/python3/python2/' ~/catkin_ws/src/midas_cpp/scripts/*.py )

Mobile version of MiDaS - Monocular Depth Estimation

Accuracy

  • Old small model - ResNet50 default-decoder 384x384
  • New small model - EfficientNet-Lite3 small-decoder 256x256

Zero-shot error (the lower - the better):

Model DIW WHDR Eth3d AbsRel Sintel AbsRel Kitti δ>1.25 NyuDepthV2 δ>1.25 TUM δ>1.25
Old small model 384x384 0.1248 0.1550 0.3300 21.81 15.73 17.00
New small model 256x256 0.1344 0.1344 0.3370 29.27 13.43 14.53
Relative improvement, % -8 % +13 % -2 % -34 % +15 % +15 %

None of Train/Valid/Test subsets of datasets (DIW, Eth3d, Sintel, Kitti, NyuDepthV2, TUM) were not involved in Training or Fine Tuning.

Inference speed (FPS) on nVidia GPU

Inference speed excluding pre and post processing, batch=1, Frames Per Second (the higher - the better):

Model Jetson Nano, FPS RTX 2080Ti, FPS
Old small model 384x384 1.6 117
New small model 256x256 8.1 232
SpeedUp, X times 5x 2x

Citation

This repository contains code to compute depth from a single image. It accompanies our paper:

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, Vladlen Koltun

Please cite our paper if you use this code or any of the models:

@article{Ranftl2020,
    author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
    title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
    journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
    year      = {2020},
}