Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
from torch import nn, Tensor | |
from torch.nn import functional as F | |
from timm.models.layers import trunc_normal_ | |
from detectron2.layers import Conv2d | |
import fvcore.nn.weight_init as weight_init | |
from ..utils import MultiheadAttention | |
class SelfAttentionLayer(nn.Module): | |
def __init__(self, d_model, nhead, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(tgt, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt | |
def forward_pre(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout(tgt2) | |
return tgt | |
def forward(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, tgt_mask, | |
tgt_key_padding_mask, query_pos) | |
return self.forward_post(tgt, tgt_mask, | |
tgt_key_padding_mask, query_pos) | |
class CrossAttentionLayer(nn.Module): | |
def __init__(self, d_model, nhead, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt, avg_attn | |
def forward_pre(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm(tgt) | |
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
tgt = tgt + self.dropout(tgt2) | |
return tgt, avg_attn | |
def forward(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, memory_mask, | |
memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, memory_mask, | |
memory_key_padding_mask, pos, query_pos) | |
class FFNLayer(nn.Module): | |
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm = nn.LayerNorm(d_model) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt): | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt | |
def forward_pre(self, tgt): | |
tgt2 = self.norm(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout(tgt2) | |
return tgt | |
def forward(self, tgt): | |
if self.normalize_before: | |
return self.forward_pre(tgt) | |
return self.forward_post(tgt) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |