Spaces:
Running
on
Zero
Running
on
Zero
# -------------------------------------------------------- | |
# SEEM -- Segment Everything Everywhere All at Once | |
# Licensed under The Apache License 2.0 [see LICENSE for details] | |
# Written by Xueyan Zou ([email protected]) | |
# -------------------------------------------------------- | |
import logging | |
from typing import Optional | |
import torch | |
from torch import nn, Tensor | |
from torch.nn import functional as F | |
from timm.models.layers import trunc_normal_ | |
from detectron2.layers import Conv2d | |
import fvcore.nn.weight_init as weight_init | |
from .build import register_decoder | |
from .modules import SelfAttentionLayer, CrossAttentionLayer, FFNLayer, MLP | |
from .prototype.attention_data_struct_seemv1 import AttentionDataStruct | |
from ..utils import rand_sample, prepare_features, configurable | |
from ..modules import PositionEmbeddingSine | |
from ..modules.point_features import point_sample | |
class SEEMDecoder(nn.Module): | |
def __init__( | |
self, | |
lang_encoder: nn.Module, | |
in_channels, | |
mask_classification=True, | |
*, | |
hidden_dim: int, | |
dim_proj: int, | |
num_queries: int, | |
contxt_len: int, | |
nheads: int, | |
dim_feedforward: int, | |
dec_layers: int, | |
pre_norm: bool, | |
mask_dim: int, | |
task_switch: dict, | |
enforce_input_project: bool, | |
max_spatial_len: int, | |
attn_arch: dict, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
in_channels: channels of the input features | |
mask_classification: whether to add mask classifier or not | |
num_classes: number of classes | |
hidden_dim: Transformer feature dimension | |
num_queries: number of queries | |
nheads: number of heads | |
dim_feedforward: feature dimension in feedforward network | |
enc_layers: number of Transformer encoder layers | |
dec_layers: number of Transformer decoder layers | |
pre_norm: whether to use pre-LayerNorm or not | |
mask_dim: mask feature dimension | |
enforce_input_project: add input project 1x1 conv even if input | |
channels and hidden dim is identical | |
""" | |
super().__init__() | |
assert mask_classification, "Only support mask classification model" | |
self.mask_classification = mask_classification | |
# positional encoding | |
N_steps = hidden_dim // 2 | |
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) | |
# define Transformer decoder here | |
self.num_heads = nheads | |
self.num_layers = dec_layers | |
self.contxt_len = contxt_len | |
self.transformer_self_attention_layers = nn.ModuleList() | |
self.transformer_cross_attention_layers = nn.ModuleList() | |
self.transformer_ffn_layers = nn.ModuleList() | |
for _ in range(self.num_layers): | |
self.transformer_self_attention_layers.append( | |
SelfAttentionLayer( | |
d_model=hidden_dim, | |
nhead=nheads, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.transformer_cross_attention_layers.append( | |
CrossAttentionLayer( | |
d_model=hidden_dim, | |
nhead=nheads, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.transformer_ffn_layers.append( | |
FFNLayer( | |
d_model=hidden_dim, | |
dim_feedforward=dim_feedforward, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.decoder_norm = nn.LayerNorm(hidden_dim) | |
self.num_queries = num_queries | |
# learnable query features | |
self.query_feat = nn.Embedding(num_queries, hidden_dim) | |
# learnable query p.e. | |
self.query_embed = nn.Embedding(num_queries, hidden_dim) | |
# level embedding (we always use 3 scales) | |
self.num_feature_levels = 3 | |
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) | |
self.input_proj = nn.ModuleList() | |
for _ in range(self.num_feature_levels): | |
if in_channels != hidden_dim or enforce_input_project: | |
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) | |
weight_init.c2_xavier_fill(self.input_proj[-1]) | |
else: | |
self.input_proj.append(nn.Sequential()) | |
self.task_switch = task_switch | |
self.query_index = {} | |
# output FFNs | |
self.lang_encoder = lang_encoder | |
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) | |
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj)) | |
trunc_normal_(self.class_embed, std=.02) | |
if task_switch['bbox']: | |
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
if task_switch['spatial']: | |
# spatial query | |
self.mask_sptial_embed = nn.ParameterList([nn.Parameter(torch.empty(hidden_dim, hidden_dim)) for x in range(3)]) | |
trunc_normal_(self.mask_sptial_embed[0], std=.02) | |
trunc_normal_(self.mask_sptial_embed[1], std=.02) | |
trunc_normal_(self.mask_sptial_embed[2], std=.02) | |
self.max_spatial_len = max_spatial_len | |
# spatial memory | |
num_spatial_memories = attn_arch['SPATIAL_MEMORIES'] | |
self.spatial_embed = nn.Embedding(num_spatial_memories, hidden_dim) | |
self.spatial_featured = nn.Embedding(num_spatial_memories, hidden_dim) | |
# learnable positive negative indicator | |
self.pn_indicator = nn.Embedding(2, hidden_dim) | |
# build AttentionDataStruct | |
attn_arch['NUM_LAYERS'] = self.num_layers | |
self.attention_data = AttentionDataStruct(attn_arch, task_switch) | |
self.sample_size = attn_arch['QUERY_NUMBER'] | |
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra): | |
ret = {} | |
ret["lang_encoder"] = lang_encoder | |
ret["in_channels"] = in_channels | |
ret["mask_classification"] = mask_classification | |
enc_cfg = cfg['MODEL']['ENCODER'] | |
dec_cfg = cfg['MODEL']['DECODER'] | |
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM'] | |
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ'] | |
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES'] | |
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] | |
# Transformer parameters: | |
ret["nheads"] = dec_cfg['NHEADS'] | |
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD'] | |
# NOTE: because we add learnable query features which requires supervision, | |
# we add minus 1 to decoder layers to be consistent with our loss | |
# implementation: that is, number of auxiliary losses is always | |
# equal to number of decoder layers. With learnable query features, the number of | |
# auxiliary losses equals number of decoders plus 1. | |
assert dec_cfg['DEC_LAYERS'] >= 1 | |
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1 | |
ret["pre_norm"] = dec_cfg['PRE_NORM'] | |
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ'] | |
ret["mask_dim"] = enc_cfg['MASK_DIM'] | |
ret["task_switch"] = extra['task_switch'] | |
ret["max_spatial_len"] = dec_cfg['MAX_SPATIAL_LEN'] | |
# attn data struct | |
ret["attn_arch"] = cfg['ATTENTION_ARCH'] | |
return ret | |
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): | |
# x is a list of multi-scale feature | |
assert len(x) == self.num_feature_levels; del mask | |
spatial_extra_flag = 'spatial_query_pos_mask' in extra.keys() or task == 'refimg' or 'refimg_tokens' in extra | |
grounding_extra_flag = 'grounding_tokens' in extra.keys() | |
spatial_memory_flag = 'prev_mask' in extra.keys() | |
flags = {"spatial": spatial_extra_flag, "grounding": grounding_extra_flag, "memories_spatial": spatial_memory_flag} | |
self.attention_data.reset(flags, task, extra) | |
src, pos, size_list = prepare_features(x, self.num_feature_levels, self.pe_layer, self.input_proj, self.level_embed) | |
_,bs,_ = src[0].shape | |
# QxNxC | |
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) | |
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) | |
self.attention_data.set('queries_object', 'queries', output, query_embed) | |
if self.task_switch['spatial'] and spatial_extra_flag: | |
if 'refimg_tokens' not in extra: | |
# get divisor | |
c,h,w = extra['spatial_query_pos_mask'][0].shape | |
divisor = torch.tensor([1,h,w], device=output.device)[None,] | |
# Get mean pos spatial query | |
non_zero_pos_point = [rand_sample(m, divisor, self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']] | |
non_zero_pos_index = [m[:,0:1].long() for m in non_zero_pos_point] | |
non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2) | |
non_zero_pos_index = nn.utils.rnn.pad_sequence(non_zero_pos_index, padding_value=-1).permute(1,0,2)[:,:,0] | |
non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0) | |
spatial_query_pos = point_sample(mask_features, non_zero_pos_point[:,:,1:].flip(dims=(2,)).type(mask_features.dtype), align_corners=True) | |
num_mask_per_batch = [len(m) for m in extra['spatial_query_pos_mask']] | |
spatial_query_pos = nn.utils.rnn.pad_sequence([torch.stack([x[ns==n].mean(dim=0, keepdim=False) if (ns==n).sum() > 0 else -torch.ones((x.shape[1]), device=spatial_query_pos.device) for n in range(mb)]) for x, m, ns, mb in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask, non_zero_pos_index, num_mask_per_batch)], padding_value=-1).nan_to_num() | |
# Get mean neg spatial query | |
non_zero_neg_point = [rand_sample(m, divisor, self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']] | |
non_zero_neg_index = [m[:,0:1].long() for m in non_zero_neg_point] | |
non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2) | |
non_zero_neg_index = nn.utils.rnn.pad_sequence(non_zero_neg_index, padding_value=-1).permute(1,0,2)[:,:,0] | |
non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0) | |
spatial_query_neg = point_sample(mask_features, non_zero_neg_point[:,:,1:].flip(dims=(2,)).type(mask_features.dtype), align_corners=True) | |
num_mask_per_batch = [len(m) for m in extra['spatial_query_neg_mask']] | |
spatial_query_neg = nn.utils.rnn.pad_sequence([torch.stack([x[ns==n].mean(dim=0, keepdim=False) if (ns==n).sum() > 0 else -torch.ones((x.shape[1]), device=spatial_query_neg.device) for n in range(mb)]) for x, m, ns, mb in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask, non_zero_neg_index, num_mask_per_batch)], padding_value=-1).nan_to_num() | |
# Get layerwise spatial query | |
src_spatial_queries = [] | |
src_spatial_maskings = [] | |
src_spatial_indices = [] | |
for i in range(len(src)): | |
hw,_,dc = src[i].shape | |
src_mask_features = src[i].view(size_list[i][0],size_list[i][1],bs,dc) | |
src_mask_features = src_mask_features @ self.mask_sptial_embed[i] | |
non_zero_query_point_pos = [rand_sample(m, divisor, self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']] | |
non_zero_query_point_neg = [rand_sample(m, divisor, self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']] | |
non_zero_query_point = [torch.cat([x[:,1:],y[:,1:]], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] | |
non_zero_query_index = [torch.cat([x[:,0:1],y[:,0:1]], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] | |
pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] | |
pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0) | |
non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2) | |
non_zero_query_index = nn.utils.rnn.pad_sequence(non_zero_query_index, padding_value=-1).permute(1,0,2) | |
non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0) | |
non_zero_query_point[non_zero_query_mask] = 0 | |
spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1) | |
spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1] | |
spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2] | |
src_spatial_queries += [spatial_tokens] | |
src_spatial_maskings += [non_zero_query_mask] | |
src_spatial_indices += [non_zero_query_index] | |
if 'refimg' in task: | |
output_refimg = {} | |
output_refimg['spatial_query_pos'] = spatial_query_pos | |
output_refimg['spatial_query_neg'] = spatial_query_neg | |
output_refimg['src_spatial_queries'] = src_spatial_queries | |
output_refimg['src_spatial_maskings'] = src_spatial_maskings | |
return output_refimg | |
else: | |
spatial_query_pos = extra['refimg_tokens']['spatial_query_pos'] | |
spatial_query_neg = extra['refimg_tokens']['spatial_query_neg'] | |
src_spatial_queries = extra['refimg_tokens']['src_spatial_queries'] | |
src_spatial_maskings = extra['refimg_tokens']['src_spatial_maskings'] | |
# Get object query for spatial index | |
self.attention_data.set_extra({"spatial_query_number": len(spatial_query_pos), "sample_size": self.sample_size}) | |
self.attention_data.set('queries_spatial', 'queries', sample_size=self.sample_size*len(spatial_query_pos)) | |
# set spatial memory | |
spatial_output = self.spatial_featured.weight.unsqueeze(1).repeat(1, bs, 1) | |
spatial_embed = self.spatial_embed.weight.unsqueeze(1).repeat(1, bs, 1) | |
self.attention_data.set('memories_spatial', 'memories', spatial_output, spatial_embed) | |
if self.task_switch['grounding'] and grounding_extra_flag: | |
# Get grounding tokens | |
grounding_tokens = extra['grounding_tokens'] | |
_grounding_tokens = grounding_tokens.detach().clone() | |
self.attention_data.set('tokens_grounding', 'tokens', grounding_tokens, _grounding_tokens) | |
self.attention_data.set('queries_grounding', 'queries') | |
self.attention_data.set_maskings('tokens_grounding', extra['grounding_nonzero_mask']) | |
output, query_embed = self.attention_data.cross_attn_variables() | |
# prediction heads on learnable query features | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0]) | |
results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None | |
results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None | |
self.attention_data.set_results(results) | |
for i in range(self.num_layers): | |
level_index = i % self.num_feature_levels | |
# CROSS ATTENTION | |
output, avg_attn = self.transformer_cross_attention_layers[i]( | |
output, src[level_index], | |
memory_mask=self.attention_data.cross_attn_mask(size_list[level_index], self.num_heads), | |
memory_key_padding_mask=None, # here we do not apply masking on padded region | |
pos=pos[level_index], query_pos=query_embed | |
) | |
self.attention_data.update_variables(output, 'cross_attn') | |
# SELF ATTENTION | |
self_attn_mask = torch.zeros((bs, self.num_queries, self.num_queries), device=query_embed.device).bool() # Default False (attend oq) | |
if self.task_switch['spatial'] and spatial_extra_flag: | |
# get spatial tokens | |
spatial_tokens = src_spatial_queries[level_index] | |
_spatial_tokens = spatial_tokens.detach().clone() | |
self.attention_data.set('tokens_spatial', 'tokens', spatial_tokens, _spatial_tokens) | |
self.attention_data.set_maskings('tokens_spatial', src_spatial_maskings[level_index]) | |
self.attention_data.set_extra({"spatial_indices": src_spatial_indices[level_index]}) | |
output, query_embed, self_attn_mask = self.attention_data.self_attn(bs, self.num_heads) | |
output = self.transformer_self_attention_layers[i]( | |
output, tgt_mask=self_attn_mask, | |
tgt_key_padding_mask=None, | |
query_pos=query_embed) | |
# FFN | |
output = self.transformer_ffn_layers[i]( | |
output | |
) | |
self.attention_data.update_variables(output, 'self_attn') | |
output, query_embed = self.attention_data.cross_attn_variables() | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i) | |
results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None | |
results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None | |
self.attention_data.set_results(results) | |
return self.attention_data.organize_output() | |
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1): | |
decoder_output = self.decoder_norm(output) | |
decoder_output = decoder_output.transpose(0, 1) | |
class_embed = decoder_output @ self.class_embed | |
outputs_class = self.lang_encoder.compute_similarity(class_embed) | |
mask_embed = self.mask_embed(decoder_output) | |
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) | |
outputs_bbox = [None for i in range(len(outputs_mask))] | |
if self.task_switch['bbox']: | |
outputs_bbox = self.bbox_embed(decoder_output) | |
# NOTE: prediction is of higher-resolution | |
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] | |
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) | |
# must use bool type | |
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. | |
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() | |
attn_mask = attn_mask.detach() | |
outputs_caption = class_embed | |
results = { | |
"attn_mask": attn_mask, | |
"predictions_class": outputs_class, | |
"predictions_mask": outputs_mask, | |
"predictions_bbox": outputs_bbox, | |
"predictions_caption": outputs_caption, | |
"predictions_maskemb": mask_embed, | |
} | |
return results | |
def get_seem_interface(cfg, in_channels, lang_encoder, mask_classification, extra): | |
return SEEMDecoder(cfg, in_channels, lang_encoder, mask_classification, extra) | |