Bisect_iitm_submission_2 / inference_app.py
Sukanyaaa's picture
Update inference_app.py
1216041 verified
import time
import json
import gradio as gr
from gradio_molecule3d import Molecule3D
import torch
from torch_geometric.data import HeteroData
import numpy as np
from loguru import logger
from pinder.core.loader.geodata import structure2tensor
from pinder.core.loader.structure import Structure
from src.models.pinder_module import PinderLitModule
from pathlib import Path
try:
from torch_cluster import knn_graph
torch_cluster_installed = True
except ImportError:
logger.warning(
"torch-cluster is not installed!"
"Please install the appropriate library for your pytorch installation."
"See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
)
torch_cluster_installed = False
def get_props_pdb(pdb_file):
structure = Structure.read_pdb(pdb_file)
atom_mask = np.isin(getattr(structure, "atom_name"), list(["CA"]))
calpha = structure[atom_mask].copy()
props = structure2tensor(
atom_coordinates=structure.coord,
atom_types=structure.atom_name,
element_types=structure.element,
residue_coordinates=calpha.coord,
residue_types=calpha.res_name,
residue_ids=calpha.res_id,
)
return structure, props
def create_graph(pdb_1, pdb_2, k=5, device: torch.device = torch.device("cpu")):
ligand_structure, props_ligand = get_props_pdb(pdb_1)
receptor_structure, props_receptor = get_props_pdb(pdb_2)
data = HeteroData()
data["ligand"].x = props_ligand["atom_types"]
data["ligand"].pos = props_ligand["atom_coordinates"]
data["ligand", "ligand"].edge_index = knn_graph(data["ligand"].pos, k=k)
data["receptor"].x = props_receptor["atom_types"]
data["receptor"].pos = props_receptor["atom_coordinates"]
data["receptor", "receptor"].edge_index = knn_graph(data["receptor"].pos, k=k)
data = data.to(device)
return data, receptor_structure, ligand_structure
def merge_pdb_files(file1, file2, output_file):
r"""
Merges two PDB files by concatenating them without altering their contents.
Parameters:
- file1 (str): Path to the first PDB file (e.g., receptor).
- file2 (str): Path to the second PDB file (e.g., ligand).
- output_file (str): Path to the output file where the merged structure will be saved.
"""
with open(output_file, "w") as outfile:
# Copy the contents of the first file
with open(file1, "r") as f1:
lines = f1.readlines()
# Write all lines except the last 'END' line
outfile.writelines(lines[:-1])
# Copy the contents of the second file
with open(file2, "r") as f2:
outfile.write(f2.read())
print(f"Merged PDB saved to {output_file}")
return output_file
def predict(
input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2
):
start_time = time.time()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
data, receptor_structure, ligand_structure = create_graph(
input_protein_1, input_protein_2, k=10, device=device
)
logger.info("Created graph data")
model = PinderLitModule.load_from_checkpoint("./checkpoints/epoch_010.ckpt")
model = model.to(device)
model.eval()
logger.info("Loaded model")
with torch.no_grad():
receptor_coords, ligand_coords = model(data)
receptor_structure.coord = receptor_coords.squeeze(0).cpu().numpy()
ligand_structure.coord = ligand_coords.squeeze(0).cpu().numpy()
receptor_pinder = Structure(
filepath=Path("./holo_receptor.pdb"), atom_array=receptor_structure
)
ligand_pinder = Structure(
filepath=Path("./holo_ligand.pdb"), atom_array=ligand_structure
)
receptor_pinder.to_pdb()
ligand_pinder.to_pdb()
out_pdb = merge_pdb_files(
"./holo_receptor.pdb", "./holo_ligand.pdb", "./output.pdb"
)
# return an output pdb file with the protein and two chains A and B.
# also return a JSON with any metrics you want to report
metrics = {"mean_plddt": 80, "binding_affinity": 2}
end_time = time.time()
run_time = end_time - start_time
return out_pdb, json.dumps(metrics), run_time
with gr.Blocks() as app:
gr.Markdown("# Template for inference")
gr.Markdown("EquiMPNN MOdel")
with gr.Row():
with gr.Column():
input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)")
input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)")
input_protein_1 = gr.File(label="Input Protein 2 monomer (PDB)")
with gr.Column():
input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)")
input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)")
input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
"3v1c_A.pdb",
"GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
"3v1c_B.pdb",
],
],
[input_seq_1, input_protein_1, input_seq_2, input_protein_2],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "A",
"color": "whiteCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "B",
"color": "greenCarbon",
},
{
"model": 0,
"chain": "A",
"style": "stick",
"sidechain": True,
"color": "whiteCarbon",
},
{
"model": 0,
"chain": "B",
"style": "stick",
"sidechain": True,
"color": "greenCarbon",
},
]
# outputs
out = Molecule3D(reps=reps)
metrics = gr.JSON(label="Metrics")
run_time = gr.Textbox(label="Runtime")
btn.click(
predict,
inputs=[
input_seq_1,
input_msa_1,
input_protein_1,
input_seq_2,
input_msa_2,
input_protein_2,
],
outputs=[out, metrics, run_time],
)
app.launch()