File size: 19,697 Bytes
61d946f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c364eb
61d946f
7c364eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783efce
 
f6ba4d9
4dd6ef8
 
 
 
 
 
 
783efce
4dd6ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783efce
4dd6ef8
65baa5e
4dd6ef8
65baa5e
4dd6ef8
 
 
 
 
 
 
 
 
 
 
783efce
4dd6ef8
 
 
65baa5e
4dd6ef8
 
 
 
783efce
 
4dd6ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971cfb
4dd6ef8
7daf88a
e2917dc
 
 
 
 
 
 
a971cfb
e2917dc
a971cfb
e2917dc
a971cfb
e2917dc
 
 
 
 
0df2078
e2917dc
 
 
 
 
 
 
 
 
 
 
0df2078
e2917dc
0df2078
e2917dc
 
 
a971cfb
e2917dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971cfb
 
 
e2917dc
 
 
 
 
 
 
 
 
 
 
 
 
9c32687
e2917dc
 
9c32687
 
e2917dc
9c32687
e2917dc
 
9c32687
 
 
e2917dc
9c32687
 
e2917dc
9c32687
 
 
 
 
 
e2917dc
 
 
9c32687
 
 
e2917dc
9c32687
e2917dc
 
9c32687
e2917dc
9c32687
 
 
 
 
 
e2917dc
9c32687
 
e2917dc
9c32687
 
 
 
 
 
 
 
 
 
 
 
 
 
e2917dc
 
9c32687
 
 
e2917dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# ## None type 
# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     messages = [{"role": "system", "content": system_message}]
    
#     # Append only the latest user message





#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for message in client.chat_completion(
#             messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if message.choices[0].delta.content is not None:
#                 token = message.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()


##Running smothly CHATBOT

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     # Build the messages list
#     messages = [{"role": "system", "content": system_message}]
#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for msg in client.chat_completion(
#             messages=messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if msg.choices[0].delta.content is not None:
#                 token = msg.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# if __name__ == "__main__":
#     demo.launch()


####03 3.1 8b

# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
# import gradio as gr
# from threading import Thread

# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
# HF_TOKEN = os.environ.get("HF_API_TOKEN",None)
# print(HF_TOKEN,"######$$$$$$$$$$$$$$$")
# MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct")

# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"

# PLACEHOLDER = """
# <center>
# <p>Hi! How can I help you today?</p>
# </center>
# """


# CSS = """
# .duplicate-button {
#     margin: auto !important;
#     color: white !important;
#     background: black !important;
#     border-radius: 100vh !important;
# }
# h3 {
#     text-align: center;
# }
# """

# device = "cuda" # for GPU usage or "cpu" for CPU usage

# quantization_config = BitsAndBytesConfig(
#     load_in_4bit=True,
#     bnb_4bit_compute_dtype=torch.bfloat16,
#     bnb_4bit_use_double_quant=True,
#     bnb_4bit_quant_type= "nf4")

# tokenizer = AutoTokenizer.from_pretrained(MODEL)
# model = AutoModelForCausalLM.from_pretrained(
#     MODEL,
#     torch_dtype=torch.bfloat16,
#     device_map="auto",
#     quantization_config=quantization_config)

# @spaces.GPU()
# def stream_chat(
#     message: str, 
#     history: list,
#     system_prompt: str,
#     temperature: float = 0.8, 
#     max_new_tokens: int = 1024, 
#     top_p: float = 1.0, 
#     top_k: int = 20, 
#     penalty: float = 1.2,
# ):
#     print(f'message: {message}')
#     print(f'history: {history}')

#     conversation = [
#         {"role": "system", "content": system_prompt}
#     ]
#     for prompt, answer in history:
#         conversation.extend([
#             {"role": "user", "content": prompt}, 
#             {"role": "assistant", "content": answer},
#         ])

#     conversation.append({"role": "user", "content": message})

#     input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
#     streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
#     generate_kwargs = dict(
#         input_ids=input_ids, 
#         max_new_tokens = max_new_tokens,
#         do_sample = False if temperature == 0 else True,
#         top_p = top_p,
#         top_k = top_k,
#         temperature = temperature,
#         repetition_penalty=penalty,
#         eos_token_id=[128001,128008,128009],
#         streamer=streamer,
#     )

#     with torch.no_grad():
#         thread = Thread(target=model.generate, kwargs=generate_kwargs)
#         thread.start()
        
#     buffer = ""
#     for new_text in streamer:
#         buffer += new_text
#         yield buffer

            
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

# with gr.Blocks(css=CSS, theme="soft") as demo:
#     gr.HTML(TITLE)
#     gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
#     gr.ChatInterface(
#         fn=stream_chat,
#         chatbot=chatbot,
#         fill_height=True,
#         additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
#         additional_inputs=[
#             gr.Textbox(
#                 value="You are a helpful assistant",
#                 label="System Prompt",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0,
#                 maximum=1,
#                 step=0.1,
#                 value=0.8,
#                 label="Temperature",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=128,
#                 maximum=8192,
#                 step=1,
#                 value=1024,
#                 label="Max new tokens",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 step=0.1,
#                 value=1.0,
#                 label="top_p",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 step=1,
#                 value=20,
#                 label="top_k",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0.0,
#                 maximum=2.0,
#                 step=0.1,
#                 value=1.2,
#                 label="Repetition penalty",
#                 render=False,
#             ),
#         ],
#         examples=[
#             ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
#             ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
#             ["Tell me a random fun fact about the Roman Empire."],
#             ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
#         ],
#         cache_examples=False,
#     )


# if __name__ == "__main__":
#     demo.launch()



###########new clientkey 04 ruunng chlrhah 


# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# import gradio as gr
# from threading import Thread

# MODEL = "THUDM/LongWriter-llama3.1-8b"

# TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"

# PLACEHOLDER = """
# <center>
# <p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
# </center>
# """

# CSS = """
# .duplicate-button {
#     margin: auto !important;
#     color: white !important;
#     background: black !important;
#     border-radius: 100vh !important;
# }
# h3 {
#     text-align: center;
# }
# """

# device = "cuda" if torch.cuda.is_available() else "cpu"

# tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
# model = model.eval()

# @spaces.GPU()
# def stream_chat(
#     message: str,
#     history: list,
#     system_prompt: str,
#     temperature: float = 0.5,
#     max_new_tokens: int = 32768,
#     top_p: float = 1.0,
#     top_k: int = 50,
# ):
#     print(f'message: {message}')
#     print(f'history: {history}')

#     full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
#     for prompt, answer in history:
#         full_prompt += f"[INST]{prompt}[/INST]{answer}"
#     full_prompt += f"[INST]{message}[/INST]"

#     inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
#     context_length = inputs.input_ids.shape[-1]

#     streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

#     generate_kwargs = dict(
#         inputs=inputs.input_ids,
#         max_new_tokens=max_new_tokens,
#         do_sample=True,
#         top_p=top_p,
#         top_k=top_k,
#         temperature=temperature,
#         num_beams=1,
#         streamer=streamer,
#     )

#     thread = Thread(target=model.generate, kwargs=generate_kwargs)
#     thread.start()

#     buffer = ""
#     for new_text in streamer:
#         buffer += new_text
#         yield buffer

# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

# with gr.Blocks(css=CSS, theme="soft") as demo:
#     gr.HTML(TITLE)
#     gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
#     gr.ChatInterface(
#         fn=stream_chat,
#         chatbot=chatbot,
#         fill_height=True,
#         additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
#         additional_inputs=[
#             gr.Textbox(
#                 value="You are a helpful assistant capable of generating long-form content.",
#                 label="System Prompt",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0,
#                 maximum=1,
#                 step=0.1,
#                 value=0.5,
#                 label="Temperature",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=1024,
#                 maximum=32768,
#                 step=1024,
#                 value=32768,
#                 label="Max new tokens",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 step=0.1,
#                 value=1.0,
#                 label="Top p",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=1,
#                 maximum=100,
#                 step=1,
#                 value=50,
#                 label="Top k",
#                 render=False,
#             ),
#         ],
#         # examples=[
#         #     ["Write a 5000-word comprehensive guide on machine learning for beginners."],
#         #     ["Create a detailed 3000-word business plan for a sustainable energy startup."],
#         #     ["Compose a 2000-word short story set in a futuristic underwater city."],
#         #     ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
#         # ],
#         # cache_examples=False,
#     )

# if __name__ == "__main__":
#     demo.launch()



# ###OCT04 LLAMA3.2 Vision Model
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import os
import spaces
from huggingface_hub import login
login(token=os.getenv("HF_API_TOKEN"))
# ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# model = MllamaForConditionalGeneration.from_pretrained(ckpt,
#     torch_dtype=torch.bfloat16).to("cuda")
# processor = AutoProcessor.from_pretrained(ckpt)


# @spaces.GPU
# def bot_streaming(message, history, max_new_tokens=250):
    
#     txt = message["text"]
#     ext_buffer = f"{txt}"
    
#     messages= [] 
#     images = []
    

#     for i, msg in enumerate(history): 
#         if isinstance(msg[0], tuple):
#             messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
#             messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
#             images.append(Image.open(msg[0][0]).convert("RGB"))
#         elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
#             # messages are already handled
#             pass
#         elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
#             messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
#             messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

#     # add current message
#     if len(message["files"]) == 1:
        
#         if isinstance(message["files"][0], str): # examples
#             image = Image.open(message["files"][0]).convert("RGB")
#         else: # regular input
#             image = Image.open(message["files"][0]["path"]).convert("RGB")
#         images.append(image)
#         messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
#     else:
#         messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})


#     texts = processor.apply_chat_template(messages, add_generation_prompt=True)

#     if images == []:
#         inputs = processor(text=texts, return_tensors="pt").to("cuda")
#     else:
#         inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
#     streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

#     generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
#     generated_text = ""
    
#     thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     thread.start()
#     buffer = ""
    
#     for new_text in streamer:
#         buffer += new_text
#         generated_text_without_prompt = buffer
#         time.sleep(0.01)
#         yield buffer


# demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",
#       textbox=gr.MultimodalTextbox(), 
#       additional_inputs = [gr.Slider(
#               minimum=10,
#               maximum=500,
#               value=250,
#               step=10,
#               label="Maximum number of new tokens to generate",
#           )
#         ],
#       cache_examples=False,
#       description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
#       stop_btn="Stop Generation", 
#       fill_height=True,
#     multimodal=True)
    
# demo.launch(debug=True,live=True)

ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

@spaces.GPU
def bot_streaming(message, history, max_new_tokens=1000):
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages = [] 
    images = []
    
    # Process history messages
    for i, msg in enumerate(history): 
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            pass  # Previous messages already handled
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):  # Text-only turn
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # Add current message
    if len(message["files"]) == 1:
        if isinstance(message["files"][0], str):  # Example images
            image = Image.open(message["files"][0]).convert("RGB")
        else:  # Regular input
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    # Prepare input for the model
    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if not images:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
    
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""
    
    # Start text generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)  # Small delay to simulate streaming
        yield buffer

# Gradio interface setup
demo = gr.ChatInterface(
    fn=bot_streaming, 
    title="AreaX-Llama3.2-11B-Vision", 
    textbox=gr.MultimodalTextbox(), 
    additional_inputs=[
        gr.Slider(
            minimum=10,
            maximum=500,
            value=250,
            step=10,
            label="Maximum number of new tokens to generate",
        )
    ],
    cache_examples=False,
    description="Try AreaX Llama3.2-11B Vision Model by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply type your question.",
    stop_btn="Stop Generation", 
    fill_height=True,
    multimodal=True
)

demo.launch(debug=True,share=True)