Spaces:
Sleeping
Sleeping
File size: 19,697 Bytes
61d946f 7c364eb 61d946f 7c364eb 783efce f6ba4d9 4dd6ef8 783efce 4dd6ef8 783efce 4dd6ef8 65baa5e 4dd6ef8 65baa5e 4dd6ef8 783efce 4dd6ef8 65baa5e 4dd6ef8 783efce 4dd6ef8 a971cfb 4dd6ef8 7daf88a e2917dc a971cfb e2917dc a971cfb e2917dc a971cfb e2917dc 0df2078 e2917dc 0df2078 e2917dc 0df2078 e2917dc a971cfb e2917dc a971cfb e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc 9c32687 e2917dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# ## None type
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# messages = [{"role": "system", "content": system_message}]
# # Append only the latest user message
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if message.choices[0].delta.content is not None:
# token = message.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# ],
# )
# if __name__ == "__main__":
# demo.launch()
##Running smothly CHATBOT
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# # Build the messages list
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for msg in client.chat_completion(
# messages=messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if msg.choices[0].delta.content is not None:
# token = msg.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
####03 3.1 8b
# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
# import gradio as gr
# from threading import Thread
# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
# HF_TOKEN = os.environ.get("HF_API_TOKEN",None)
# print(HF_TOKEN,"######$$$$$$$$$$$$$$$")
# MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct")
# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"
# PLACEHOLDER = """
# <center>
# <p>Hi! How can I help you today?</p>
# </center>
# """
# CSS = """
# .duplicate-button {
# margin: auto !important;
# color: white !important;
# background: black !important;
# border-radius: 100vh !important;
# }
# h3 {
# text-align: center;
# }
# """
# device = "cuda" # for GPU usage or "cpu" for CPU usage
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type= "nf4")
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# quantization_config=quantization_config)
# @spaces.GPU()
# def stream_chat(
# message: str,
# history: list,
# system_prompt: str,
# temperature: float = 0.8,
# max_new_tokens: int = 1024,
# top_p: float = 1.0,
# top_k: int = 20,
# penalty: float = 1.2,
# ):
# print(f'message: {message}')
# print(f'history: {history}')
# conversation = [
# {"role": "system", "content": system_prompt}
# ]
# for prompt, answer in history:
# conversation.extend([
# {"role": "user", "content": prompt},
# {"role": "assistant", "content": answer},
# ])
# conversation.append({"role": "user", "content": message})
# input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# input_ids=input_ids,
# max_new_tokens = max_new_tokens,
# do_sample = False if temperature == 0 else True,
# top_p = top_p,
# top_k = top_k,
# temperature = temperature,
# repetition_penalty=penalty,
# eos_token_id=[128001,128008,128009],
# streamer=streamer,
# )
# with torch.no_grad():
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# yield buffer
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
# with gr.Blocks(css=CSS, theme="soft") as demo:
# gr.HTML(TITLE)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# gr.ChatInterface(
# fn=stream_chat,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Textbox(
# value="You are a helpful assistant",
# label="System Prompt",
# render=False,
# ),
# gr.Slider(
# minimum=0,
# maximum=1,
# step=0.1,
# value=0.8,
# label="Temperature",
# render=False,
# ),
# gr.Slider(
# minimum=128,
# maximum=8192,
# step=1,
# value=1024,
# label="Max new tokens",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=1.0,
# label="top_p",
# render=False,
# ),
# gr.Slider(
# minimum=1,
# maximum=20,
# step=1,
# value=20,
# label="top_k",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=2.0,
# step=0.1,
# value=1.2,
# label="Repetition penalty",
# render=False,
# ),
# ],
# examples=[
# ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
# ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
# ["Tell me a random fun fact about the Roman Empire."],
# ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
# ],
# cache_examples=False,
# )
# if __name__ == "__main__":
# demo.launch()
###########new clientkey 04 ruunng chlrhah
# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# import gradio as gr
# from threading import Thread
# MODEL = "THUDM/LongWriter-llama3.1-8b"
# TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
# PLACEHOLDER = """
# <center>
# <p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
# </center>
# """
# CSS = """
# .duplicate-button {
# margin: auto !important;
# color: white !important;
# background: black !important;
# border-radius: 100vh !important;
# }
# h3 {
# text-align: center;
# }
# """
# device = "cuda" if torch.cuda.is_available() else "cpu"
# tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
# model = model.eval()
# @spaces.GPU()
# def stream_chat(
# message: str,
# history: list,
# system_prompt: str,
# temperature: float = 0.5,
# max_new_tokens: int = 32768,
# top_p: float = 1.0,
# top_k: int = 50,
# ):
# print(f'message: {message}')
# print(f'history: {history}')
# full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
# for prompt, answer in history:
# full_prompt += f"[INST]{prompt}[/INST]{answer}"
# full_prompt += f"[INST]{message}[/INST]"
# inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
# context_length = inputs.input_ids.shape[-1]
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# inputs=inputs.input_ids,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_p=top_p,
# top_k=top_k,
# temperature=temperature,
# num_beams=1,
# streamer=streamer,
# )
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# yield buffer
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
# with gr.Blocks(css=CSS, theme="soft") as demo:
# gr.HTML(TITLE)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# gr.ChatInterface(
# fn=stream_chat,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Textbox(
# value="You are a helpful assistant capable of generating long-form content.",
# label="System Prompt",
# render=False,
# ),
# gr.Slider(
# minimum=0,
# maximum=1,
# step=0.1,
# value=0.5,
# label="Temperature",
# render=False,
# ),
# gr.Slider(
# minimum=1024,
# maximum=32768,
# step=1024,
# value=32768,
# label="Max new tokens",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=1.0,
# label="Top p",
# render=False,
# ),
# gr.Slider(
# minimum=1,
# maximum=100,
# step=1,
# value=50,
# label="Top k",
# render=False,
# ),
# ],
# # examples=[
# # ["Write a 5000-word comprehensive guide on machine learning for beginners."],
# # ["Create a detailed 3000-word business plan for a sustainable energy startup."],
# # ["Compose a 2000-word short story set in a futuristic underwater city."],
# # ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
# # ],
# # cache_examples=False,
# )
# if __name__ == "__main__":
# demo.launch()
# ###OCT04 LLAMA3.2 Vision Model
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import os
import spaces
from huggingface_hub import login
login(token=os.getenv("HF_API_TOKEN"))
# ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# model = MllamaForConditionalGeneration.from_pretrained(ckpt,
# torch_dtype=torch.bfloat16).to("cuda")
# processor = AutoProcessor.from_pretrained(ckpt)
# @spaces.GPU
# def bot_streaming(message, history, max_new_tokens=250):
# txt = message["text"]
# ext_buffer = f"{txt}"
# messages= []
# images = []
# for i, msg in enumerate(history):
# if isinstance(msg[0], tuple):
# messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
# messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
# images.append(Image.open(msg[0][0]).convert("RGB"))
# elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
# # messages are already handled
# pass
# elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
# messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
# messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# # add current message
# if len(message["files"]) == 1:
# if isinstance(message["files"][0], str): # examples
# image = Image.open(message["files"][0]).convert("RGB")
# else: # regular input
# image = Image.open(message["files"][0]["path"]).convert("RGB")
# images.append(image)
# messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
# else:
# messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
# texts = processor.apply_chat_template(messages, add_generation_prompt=True)
# if images == []:
# inputs = processor(text=texts, return_tensors="pt").to("cuda")
# else:
# inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
# streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
# generated_text = ""
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# generated_text_without_prompt = buffer
# time.sleep(0.01)
# yield buffer
# demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",
# textbox=gr.MultimodalTextbox(),
# additional_inputs = [gr.Slider(
# minimum=10,
# maximum=500,
# value=250,
# step=10,
# label="Maximum number of new tokens to generate",
# )
# ],
# cache_examples=False,
# description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
# stop_btn="Stop Generation",
# fill_height=True,
# multimodal=True)
# demo.launch(debug=True,live=True)
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
@spaces.GPU
def bot_streaming(message, history, max_new_tokens=1000):
txt = message["text"]
ext_buffer = f"{txt}"
messages = []
images = []
# Process history messages
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass # Previous messages already handled
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # Text-only turn
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Add current message
if len(message["files"]) == 1:
if isinstance(message["files"][0], str): # Example images
image = Image.open(message["files"][0]).convert("RGB")
else: # Regular input
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
# Prepare input for the model
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
# Start text generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01) # Small delay to simulate streaming
yield buffer
# Gradio interface setup
demo = gr.ChatInterface(
fn=bot_streaming,
title="AreaX-Llama3.2-11B-Vision",
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=500,
value=250,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="Try AreaX Llama3.2-11B Vision Model by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply type your question.",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
demo.launch(debug=True,share=True) |