Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import pytorch_lightning as pl | |
import config as cfg | |
""" | |
Information about architecture config: | |
Tuple is structured by (filters, kernel_size, stride) | |
Every conv is a same convolution. | |
List is structured by "B" indicating a residual block followed by the number of repeats | |
"S" is for scale prediction block and computing the yolo loss | |
"U" is for upsampling the feature map and concatenating with a previous layer | |
""" | |
config = [ | |
(32, 3, 1), | |
(64, 3, 2), | |
["B", 1], | |
(128, 3, 2), | |
["B", 2], | |
(256, 3, 2), | |
["B", 8], | |
(512, 3, 2), | |
["B", 8], | |
(1024, 3, 2), | |
["B", 4], # To this point is Darknet-53 | |
(512, 1, 1), | |
(1024, 3, 1), | |
"S", | |
(256, 1, 1), | |
"U", | |
(256, 1, 1), | |
(512, 3, 1), | |
"S", | |
(128, 1, 1), | |
"U", | |
(128, 1, 1), | |
(256, 3, 1), | |
"S", | |
] | |
class CNNBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.leaky = nn.LeakyReLU(0.1) | |
self.use_bn_act = bn_act | |
def forward(self, x): | |
if self.use_bn_act: | |
return self.leaky(self.bn(self.conv(x))) | |
else: | |
return self.conv(x) | |
class ResidualBlock(nn.Module): | |
def __init__(self, channels, use_residual=True, num_repeats=1): | |
super().__init__() | |
self.layers = nn.ModuleList() | |
for repeat in range(num_repeats): | |
self.layers += [ | |
nn.Sequential( | |
CNNBlock(channels, channels // 2, kernel_size=1), | |
CNNBlock(channels // 2, channels, kernel_size=3, padding=1), | |
) | |
] | |
self.use_residual = use_residual | |
self.num_repeats = num_repeats | |
def forward(self, x): | |
for layer in self.layers: | |
if self.use_residual: | |
x = x + layer(x) | |
else: | |
x = layer(x) | |
return x | |
class ScalePrediction(nn.Module): | |
def __init__(self, in_channels, num_classes): | |
super().__init__() | |
self.pred = nn.Sequential( | |
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1), | |
CNNBlock( | |
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1 | |
), | |
) | |
self.num_classes = num_classes | |
def forward(self, x): | |
return ( | |
self.pred(x) | |
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3]) | |
.permute(0, 1, 3, 4, 2) | |
) | |
class Lightning_YOLO(pl.LightningModule): | |
def __init__(self, in_channels=3, num_classes=20): | |
super().__init__() | |
self.num_classes = num_classes | |
self.in_channels = in_channels | |
self.layers = self._create_conv_layers() | |
def forward(self, x): | |
outputs = [] # for each scale | |
route_connections = [] | |
for layer in self.layers: | |
if isinstance(layer, ScalePrediction): | |
outputs.append(layer(x)) | |
continue | |
x = layer(x) | |
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8: | |
route_connections.append(x) | |
elif isinstance(layer, nn.Upsample): | |
x = torch.cat([x, route_connections[-1]], dim=1) | |
route_connections.pop() | |
return outputs | |
def _create_conv_layers(self): | |
layers = nn.ModuleList() | |
in_channels = self.in_channels | |
for module in config: | |
if isinstance(module, tuple): | |
out_channels, kernel_size, stride = module | |
layers.append( | |
CNNBlock( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=1 if kernel_size == 3 else 0, | |
) | |
) | |
in_channels = out_channels | |
elif isinstance(module, list): | |
num_repeats = module[1] | |
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,)) | |
elif isinstance(module, str): | |
if module == "S": | |
layers += [ | |
ResidualBlock(in_channels, use_residual=False, num_repeats=1), | |
CNNBlock(in_channels, in_channels // 2, kernel_size=1), | |
ScalePrediction(in_channels // 2, num_classes=self.num_classes), | |
] | |
in_channels = in_channels // 2 | |
elif module == "U": | |
layers.append(nn.Upsample(scale_factor=2),) | |
in_channels = in_channels * 3 | |
return layers |