Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
import gradio as gr | |
from pytube import YouTube | |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "MohamedRashad/Arabic-Whisper-CodeSwitching-Edition" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000*3 | |
YT_LENGTH_LIMIT_S = 60*60*3 # limit to 3 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
processor = WhisperProcessor.from_pretrained(MODEL_NAME) | |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True)["text"] | |
return text | |
def _return_yt_html_embed(yt_url): | |
video_id = YouTube(yt_url).video_id | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
yt = YouTube(yt_url) | |
if yt.length > YT_LENGTH_LIMIT_S: | |
raise gr.Error("YouTube video is too long! Please upload a video that is less than 1 hour long.") | |
stream = yt.streams.filter(only_audio=True).first() | |
stream.download(filename=filename) | |
def seconds_to_timestamp(seconds): | |
total_seconds = int(seconds) | |
hours = total_seconds // 3600 | |
minutes = (total_seconds % 3600) // 60 | |
remaining_seconds = seconds % 60 | |
return f"{hours:02d}:{minutes:02d}:{remaining_seconds:06.3f}" | |
def chunks_to_subtitle(chunks): | |
subtitle = "" | |
for chunk in chunks: | |
start = seconds_to_timestamp(chunk["timestamp"][0]) | |
end = seconds_to_timestamp(chunk["timestamp"][1]) | |
text = chunk["text"] | |
subtitle += f"{start} --> {end}\n{text}\n\n" | |
return subtitle | |
def yt_transcribe(yt_url): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
output = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True) | |
subtitle = chunks_to_subtitle(output["chunks"]) | |
return html_embed_str, subtitle | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe_demo = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
], | |
outputs=["html", "text"], | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe_demo], ["Microphone", "Audio file", "YouTube"]) | |
demo.queue().launch(share=True) | |