MuhammmadRizwanRizwan's picture
Update app.py
00c713d verified
raw
history blame
2.86 kB
import gradio as gr
gr.load("models/dima806/facial_emotions_image_detection").launch()
# import gradio as gr
# import tensorflow as tf
# from transformers import pipeline
# def process_image(image):
# try:
# # Initialize emotion classifier
# classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
# # Get predictions
# result = classifier(image)
# # Convert results to required format
# emotions = {item['label']: float(item['score']) * 100 for item in result}
# # Generate analysis and report
# analysis = generate_analysis(emotions)
# report = generate_report(emotions, analysis)
# return [(k, v) for k, v in emotions.items()], analysis['detailed_analysis'], report
# except Exception as e:
# return [("error", 0)], f"Error: {str(e)}", "Error generating report"
# def generate_analysis(emotions):
# descriptions = {
# 'happy': 'indicates joy and positive mood',
# 'angry': 'suggests frustration or displeasure',
# 'surprise': 'shows astonishment',
# 'fear': 'reflects anxiety or concern',
# 'neutral': 'displays a balanced state'
# }
# top_emotion = max(emotions.items(), key=lambda x: x[1])
# return {
# "primary_emotion": top_emotion[0],
# "detailed_analysis": f"Primary emotion detected is {top_emotion[0]} ({top_emotion[1]:.1f}%), which {descriptions.get(top_emotion[0], '')}."
# }
# def generate_report(emotions, analysis):
# return f"""Emotion Analysis Report
# Primary Emotion: {analysis['primary_emotion'].upper()}
# Confidence: {emotions[analysis['primary_emotion']]:.1f}%
# All Detected Emotions:
# """ + '\n'.join(f"- {k}: {v:.1f}%" for k, v in sorted(
# emotions.items(),
# key=lambda x: x[1],
# reverse=True))
# # Create Gradio interface
# with gr.Blocks(theme=gr.themes.Soft()) as app:
# gr.Markdown("# Facial Emotion Analysis System")
# with gr.Row():
# with gr.Column(scale=1):
# input_image = gr.Image(type="numpy")
# submit_btn = gr.Button("Analyze", variant="primary")
# with gr.Column(scale=1):
# emotion_scores = gr.Label(label="Emotion Scores")
# analysis_text = gr.Textbox(label="Analysis", lines=3)
# report_text = gr.Textbox(label="Full Report", lines=10)
# download_btn = gr.Button("Download Report")
# submit_btn.click(
# fn=process_image,
# inputs=[input_image],
# outputs=[emotion_scores, analysis_text, report_text]
# )
# download_btn.click(
# fn=lambda x: x,
# inputs=[report_text],
# outputs=[gr.File(label="Download Report")]
# )
# app.launch()