Spaces:
No application file
No application file
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import torch | |
import detectron2 | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
from detectron2.utils.visualizer import ColorMode | |
model_path = 'model_final.pth' | |
cfg = get_cfg() | |
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75 | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 19 | |
cfg.MODEL.WEIGHTS = model_path | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE='cpu' | |
predictor = DefaultPredictor(cfg) | |
my_metadata = MetadataCatalog.get("car_part_merged_dataset_val") | |
my_metadata.thing_classes = ['_background_', | |
'back_bumper', | |
'back_glass', | |
'back_left_door', | |
'back_left_light', | |
'back_right_door', | |
'back_right_light', | |
'front_bumper', | |
'front_glass', | |
'front_left_door', | |
'front_left_light', | |
'front_right_door', | |
'front_right_light', | |
'hood', | |
'left_mirror', | |
'right_mirror', | |
'tailgate', | |
'trunk', | |
'wheel'] | |
def inference(image): | |
print(image.height) | |
height = image.height | |
# img = np.array(image.resize((500, height))) | |
img = np.array(image) | |
outputs = predictor(img) | |
v = Visualizer(img[:, :, ::-1], | |
metadata=my_metadata, | |
scale=0.5, | |
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models | |
) | |
#v = Visualizer(img,scale=1.2) | |
#print(outputs["instances"].to('cpu')) | |
out = v.draw_instance_predictions(outputs["instances"]) | |
return out.get_image()[:, :, ::-1] | |
title = "Detectron2 Car Parts Detection" | |
description = "This demo introduces an interactive playground for our trained Detectron2 model." | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type="pil", label="Input")], | |
gr.outputs.Image(type="numpy", label="Output"), | |
title=title, | |
description=description, | |
examples=[]).launch() |