|
''' |
|
Downloads models from Hugging Face to models/model-name. |
|
|
|
Example: |
|
python download-model.py facebook/opt-1.3b |
|
|
|
''' |
|
|
|
import argparse |
|
import base64 |
|
import json |
|
import multiprocessing |
|
import re |
|
import sys |
|
from pathlib import Path |
|
|
|
import requests |
|
import tqdm |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('MODEL', type=str, default=None, nargs='?') |
|
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') |
|
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') |
|
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') |
|
args = parser.parse_args() |
|
|
|
def get_file(args): |
|
url = args[0] |
|
output_folder = args[1] |
|
idx = args[2] |
|
tot = args[3] |
|
|
|
print(f"Downloading file {idx} of {tot}...") |
|
r = requests.get(url, stream=True) |
|
with open(output_folder / Path(url.split('/')[-1]), 'wb') as f: |
|
total_size = int(r.headers.get('content-length', 0)) |
|
block_size = 1024 |
|
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True) |
|
for data in r.iter_content(block_size): |
|
t.update(len(data)) |
|
f.write(data) |
|
t.close() |
|
|
|
def sanitize_branch_name(branch_name): |
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$") |
|
if pattern.match(branch_name): |
|
return branch_name |
|
else: |
|
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") |
|
|
|
def select_model_from_default_options(): |
|
models = { |
|
"Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"), |
|
"Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"), |
|
"Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"), |
|
"Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"), |
|
"Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"), |
|
"Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"), |
|
"OPT 6.7b": ("facebook", "opt-6.7b", "main"), |
|
"OPT 2.7b": ("facebook", "opt-2.7b", "main"), |
|
"OPT 1.3b": ("facebook", "opt-1.3b", "main"), |
|
"OPT 350m": ("facebook", "opt-350m", "main"), |
|
} |
|
choices = {} |
|
|
|
print("Select the model that you want to download:\n") |
|
for i,name in enumerate(models): |
|
char = chr(ord('A')+i) |
|
choices[char] = name |
|
print(f"{char}) {name}") |
|
char = chr(ord('A')+len(models)) |
|
print(f"{char}) None of the above") |
|
|
|
print() |
|
print("Input> ", end='') |
|
choice = input()[0].strip().upper() |
|
if choice == char: |
|
print("""\nThen type the name of your desired Hugging Face model in the format organization/name. |
|
|
|
Examples: |
|
PygmalionAI/pygmalion-6b |
|
facebook/opt-1.3b |
|
""") |
|
|
|
print("Input> ", end='') |
|
model = input() |
|
branch = "main" |
|
else: |
|
arr = models[choices[choice]] |
|
model = f"{arr[0]}/{arr[1]}" |
|
branch = arr[2] |
|
|
|
return model, branch |
|
|
|
def get_download_links_from_huggingface(model, branch): |
|
base = "https://huggingface.co" |
|
page = f"/api/models/{model}/tree/{branch}?cursor=" |
|
cursor = b"" |
|
|
|
links = [] |
|
classifications = [] |
|
has_pytorch = False |
|
has_safetensors = False |
|
while True: |
|
content = requests.get(f"{base}{page}{cursor.decode()}").content |
|
|
|
dict = json.loads(content) |
|
if len(dict) == 0: |
|
break |
|
|
|
for i in range(len(dict)): |
|
fname = dict[i]['path'] |
|
|
|
is_pytorch = re.match("pytorch_model.*\.bin", fname) |
|
is_safetensors = re.match("model.*\.safetensors", fname) |
|
is_tokenizer = re.match("tokenizer.*\.model", fname) |
|
is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer |
|
|
|
if any((is_pytorch, is_safetensors, is_text, is_tokenizer)): |
|
if is_text: |
|
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") |
|
classifications.append('text') |
|
continue |
|
if not args.text_only: |
|
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") |
|
if is_safetensors: |
|
has_safetensors = True |
|
classifications.append('safetensors') |
|
elif is_pytorch: |
|
has_pytorch = True |
|
classifications.append('pytorch') |
|
|
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' |
|
cursor = base64.b64encode(cursor) |
|
cursor = cursor.replace(b'=', b'%3D') |
|
|
|
|
|
if has_pytorch and has_safetensors: |
|
for i in range(len(classifications)-1, -1, -1): |
|
if classifications[i] == 'pytorch': |
|
links.pop(i) |
|
|
|
return links |
|
|
|
if __name__ == '__main__': |
|
model = args.MODEL |
|
branch = args.branch |
|
if model is None: |
|
model, branch = select_model_from_default_options() |
|
else: |
|
if model[-1] == '/': |
|
model = model[:-1] |
|
branch = args.branch |
|
if branch is None: |
|
branch = "main" |
|
else: |
|
try: |
|
branch = sanitize_branch_name(branch) |
|
except ValueError as err_branch: |
|
print(f"Error: {err_branch}") |
|
sys.exit() |
|
if branch != 'main': |
|
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}') |
|
else: |
|
output_folder = Path("models") / model.split('/')[-1] |
|
if not output_folder.exists(): |
|
output_folder.mkdir() |
|
|
|
links = get_download_links_from_huggingface(model, branch) |
|
|
|
|
|
print(f"Downloading the model to {output_folder}") |
|
pool = multiprocessing.Pool(processes=args.threads) |
|
results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))]) |
|
pool.close() |
|
pool.join() |
|
|