File size: 10,977 Bytes
7c89d3a
 
 
 
 
d7ca9c8
eeb4ef5
d7ca9c8
b22f2c5
7c89d3a
b22f2c5
303d638
 
 
 
 
 
 
 
 
b22f2c5
 
 
 
a495ef9
7c89d3a
 
303d638
 
 
7c89d3a
 
303d638
eeb4ef5
 
 
 
7c89d3a
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
303d638
b22f2c5
 
 
 
303d638
 
b22f2c5
303d638
 
 
 
 
d7ca9c8
303d638
 
77f9404
7c89d3a
303d638
 
 
 
7c89d3a
 
 
 
 
 
 
303d638
3f35512
7c89d3a
 
2139aa8
7c89d3a
2139aa8
7c89d3a
2139aa8
 
 
7c89d3a
 
303d638
 
 
 
b000100
303d638
 
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303d638
b22f2c5
 
 
77f9404
 
303d638
77f9404
7c89d3a
83686fb
 
7c89d3a
b22f2c5
83686fb
b22f2c5
 
 
83686fb
 
b22f2c5
83686fb
 
b22f2c5
7c89d3a
303d638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22f2c5
83686fb
 
7c89d3a
b22f2c5
 
 
83686fb
 
 
b22f2c5
 
83686fb
b22f2c5
7c89d3a
 
877f3e5
 
7c89d3a
 
77f9404
0269eb6
 
 
 
e629ed6
0269eb6
 
 
 
 
 
 
5d6e388
af44365
5d6e388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ae68f
 
 
0f15bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af44365
 
 
 
 
 
 
 
 
 
 
 
ec512c8
af44365
0f15bd0
af44365
540e65e
 
 
 
 
0f15bd0
540e65e
 
ec512c8
 
 
 
 
 
 
 
 
 
 
af44365
ec512c8
0fd0930
ec512c8
 
 
 
 
 
af44365
ec512c8
 
0fd0930
 
af44365
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
from test_ccsr_tile import load_pipeline
import argparse
from accelerate import Accelerator

# Global variables
class ModelContainer:
    def __init__(self):
        self.pipeline = None
        self.generator = None
        self.accelerator = None
        self.is_initialized = False

model_container = ModelContainer()

class Args:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

@spaces.GPU
def initialize_models():
    """Initialize models only if they haven't been initialized yet"""
    if model_container.is_initialized:
        return True
    
    try:
        # Download model repository (only once)
        model_path = snapshot_download(
            repo_id="NightRaven109/CCSRModels",
            token=os.environ['Read2']
        )

        # Set up default arguments
        args = Args(
            pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
            controlnet_model_path=os.path.join(model_path, "Controlnet"),
            vae_model_path=os.path.join(model_path, "vae"),
            mixed_precision="fp16",
            tile_vae=False,
            sample_method="ddpm",
            vae_encoder_tile_size=1024,
            vae_decoder_tile_size=224
        )

        # Initialize accelerator
        model_container.accelerator = Accelerator(
            mixed_precision=args.mixed_precision,
        )

        # Load pipeline
        model_container.pipeline = load_pipeline(args, model_container.accelerator, 
                                              enable_xformers_memory_efficient_attention=False)
        
        # Set models to eval mode
        model_container.pipeline.unet.eval()
        model_container.pipeline.controlnet.eval()
        model_container.pipeline.vae.eval()
        model_container.pipeline.text_encoder.eval()
        
        # Move pipeline to CUDA and set to eval mode once
        model_container.pipeline = model_container.pipeline.to("cuda")
        
        # Initialize generator
        model_container.generator = torch.Generator("cuda")
        
        # Set initialization flag
        model_container.is_initialized = True
        
        return True

    except Exception as e:
        print(f"Error initializing models: {str(e)}")
        return False

@torch.no_grad()  # Add no_grad decorator for inference
@spaces.GPU
def process_image(
    input_image,
    prompt="clean, texture, high-resolution, 8k",
    negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
    guidance_scale=2.5,
    conditioning_scale=1.0,
    num_inference_steps=6,
    seed=None,
    upscale_factor=4,
    color_fix_method="adain"
):
    # Initialize models if not already done
    if not model_container.is_initialized:
        if not initialize_models():
            return None

    try:
        # Create args object
        args = Args(
            added_prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            conditioning_scale=conditioning_scale,
            num_inference_steps=num_inference_steps,
            seed=seed,
            upscale=upscale_factor,
            process_size=512,
            align_method=color_fix_method,
            t_max=0.6666,
            t_min=0.0,
            tile_diffusion=False,
            tile_diffusion_size=None,
            tile_diffusion_stride=None,
            start_steps=999,
            start_point='lr',
            use_vae_encode_condition=True,
            sample_times=1
        )

        # Set seed if provided
        if seed is not None:
            model_container.generator.manual_seed(seed)

        # Process input image
        validation_image = Image.fromarray(input_image)
        ori_width, ori_height = validation_image.size
        
        # Resize logic
        resize_flag = False
        if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
            scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
            validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
            resize_flag = True

        validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
        validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
        width, height = validation_image.size

        # Generate image
        inference_time, output = model_container.pipeline(
            args.t_max,
            args.t_min,
            args.tile_diffusion,
            args.tile_diffusion_size,
            args.tile_diffusion_stride,
            args.added_prompt,
            validation_image,
            num_inference_steps=args.num_inference_steps,
            generator=model_container.generator,
            height=height,
            width=width,
            guidance_scale=args.guidance_scale,
            negative_prompt=args.negative_prompt,
            conditioning_scale=args.conditioning_scale,
            start_steps=args.start_steps,
            start_point=args.start_point,
            use_vae_encode_condition=True,
        )

        image = output.images[0]

        # Apply color fixing if specified
        if args.align_method != "none":
            from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
            fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
            image = fix_func(image, validation_image)
            
        if resize_flag:
            image = image.resize((ori_width*args.upscale, ori_height*args.upscale))

        return image

    except Exception as e:
        print(f"Error processing image: {str(e)}")
        import traceback
        traceback.print_exc()
        return None


# Define default values
DEFAULT_VALUES = {
    "prompt": "clean, texture, high-resolution, 8k",
    "negative_prompt": "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
    "guidance_scale": 3,
    "conditioning_scale": 1.0,
    "num_steps": 6,
    "seed": None,
    "upscale_factor": 4,
    "color_fix_method": "adain"
}

# Define example data
EXAMPLES = [
    [
        "examples/1.png",  # Input image path
        "clean, texture, high-resolution, 8k",  # Prompt
        "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",  # Negative prompt
        3.0,  # Guidance scale
        1.0,  # Conditioning scale
        6,    # Num steps
        42,   # Seed
        4,    # Upscale factor
        "wavelet"  # Color fix method
    ],
    [
        "examples/22.png",
        "clean, texture, high-resolution, 8k",
        "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
        3.0,
        1.0,
        6,
        123,
        4,
        "wavelet"
    ],
    [
        "examples/4.png",
        "clean, texture, high-resolution, 8k",
        "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
        3.0,
        1.0,
        6,
        123,
        4,
        "wavelet"
    ],
    [
        "examples/9D03D7F206775949.png",
        "clean, texture, high-resolution, 8k",
        "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
        3.0,
        1.0,
        6,
        123,
        4,
        "wavelet"
    ],
    [
        "examples/3.jpeg",
        "clean, texture, high-resolution, 8k",
        "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
        2.5,
        1.0,
        6,
        456,
        4,
        "wavelet"
    ]
]

# Create interface components
with gr.Blocks(title="Texture Super-Resolution") as demo:
    gr.Markdown("## Texture Super-Resolution")
    gr.Markdown("Upload a texture to enhance its resolution.")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image")
            
            with gr.Accordion("Advanced Options", open=False):
                prompt = gr.Textbox(label="Prompt", value=DEFAULT_VALUES["prompt"])
                negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_VALUES["negative_prompt"])
                guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=DEFAULT_VALUES["guidance_scale"], label="Guidance Scale")
                conditioning_scale = gr.Slider(minimum=0.1, maximum=2.0, value=DEFAULT_VALUES["conditioning_scale"], label="Conditioning Scale")
                num_steps = gr.Slider(minimum=1, maximum=50, value=DEFAULT_VALUES["num_steps"], step=1, label="Number of Steps")
                seed = gr.Number(label="Seed", value=DEFAULT_VALUES["seed"])
                upscale_factor = gr.Slider(minimum=1, maximum=8, value=DEFAULT_VALUES["upscale_factor"], step=1, label="Upscale Factor")
                color_fix_method = gr.Dropdown(
                    choices=["none", "wavelet", "adain"], 
                    label="Color Fix Method", 
                    value=DEFAULT_VALUES["color_fix_method"]
                )
            
            with gr.Row():
                clear_btn = gr.Button("Clear")
                submit_btn = gr.Button("Submit", variant="primary")

        with gr.Column():
            output_image = gr.Image(label="Generated Image")

    # Add examples
    gr.Examples(
        examples=EXAMPLES,
        inputs=[
            input_image, prompt, negative_prompt, guidance_scale,
            conditioning_scale, num_steps, seed, upscale_factor,
            color_fix_method
        ],
        outputs=output_image,
        fn=process_image,
        cache_examples=True  # Cache the results for faster loading
    )

    # Define submit action
    submit_btn.click(
        fn=process_image,
        inputs=[
            input_image, prompt, negative_prompt, guidance_scale,
            conditioning_scale, num_steps, seed, upscale_factor,
            color_fix_method
        ],
        outputs=output_image
    )

    # Define clear action that resets to default values
    def reset_to_defaults():
        return [
            None,  # input_image
            DEFAULT_VALUES["prompt"],
            DEFAULT_VALUES["negative_prompt"],
            DEFAULT_VALUES["guidance_scale"],
            DEFAULT_VALUES["conditioning_scale"],
            DEFAULT_VALUES["num_steps"],
            DEFAULT_VALUES["seed"],
            DEFAULT_VALUES["upscale_factor"],
            DEFAULT_VALUES["color_fix_method"]
        ]

    clear_btn.click(
        fn=reset_to_defaults,
        inputs=None,
        outputs=[
            input_image, prompt, negative_prompt, guidance_scale,
            conditioning_scale, num_steps, seed, upscale_factor,
            color_fix_method
        ]
    )

if __name__ == "__main__":
    demo.launch()