Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import spaces | |
from PIL import Image | |
from huggingface_hub import snapshot_download | |
from test_ccsr_tile import main, load_pipeline | |
import argparse | |
from accelerate import Accelerator | |
# Initialize global variables | |
pipeline = None | |
generator = None | |
accelerator = None | |
class Args: | |
def __init__(self, **kwargs): | |
self.__dict__.update(kwargs) | |
def initialize_models(): | |
global pipeline, generator, accelerator | |
try: | |
# Download model repository | |
model_path = snapshot_download( | |
repo_id="NightRaven109/CCSRModels", | |
token=os.environ['Read2'] | |
) | |
# Set up default arguments | |
args = Args( | |
pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"), | |
controlnet_model_path=os.path.join(model_path, "Controlnet"), | |
vae_model_path=os.path.join(model_path, "vae"), | |
mixed_precision="fp16", | |
tile_vae=False, | |
sample_method="ddpm", | |
vae_encoder_tile_size=1024, | |
vae_decoder_tile_size=224 | |
) | |
# Initialize accelerator | |
accelerator = Accelerator( | |
mixed_precision=args.mixed_precision, | |
) | |
# Load pipeline | |
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False) | |
# Initialize generator | |
generator = torch.Generator(device=accelerator.device) | |
return True | |
except Exception as e: | |
print(f"Error initializing models: {str(e)}") | |
return False | |
def process_image( | |
input_image, | |
prompt="clean, high-resolution, 8k", | |
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", | |
guidance_scale=1.0, | |
conditioning_scale=1.0, | |
num_inference_steps=20, | |
seed=42, | |
upscale_factor=2, | |
color_fix_method="adain" | |
): | |
global pipeline, generator, accelerator | |
if pipeline is None: | |
if not initialize_models(): | |
return None | |
try: | |
# Create args object with all necessary parameters | |
args = Args( | |
added_prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
conditioning_scale=conditioning_scale, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
upscale=upscale_factor, | |
process_size=512, | |
align_method=color_fix_method, | |
t_max=0.6666, | |
t_min=0.0, | |
tile_diffusion=False, | |
tile_diffusion_size=None, | |
tile_diffusion_stride=None, | |
start_steps=999, | |
start_point='lr', | |
use_vae_encode_condition=False, | |
sample_times=1 | |
) | |
# Set seed if provided | |
if seed is not None: | |
generator.manual_seed(seed) | |
# Process input image | |
validation_image = Image.fromarray(input_image) | |
ori_width, ori_height = validation_image.size | |
# Resize logic | |
resize_flag = False | |
if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale: | |
scale = (args.process_size//args.upscale)/min(ori_width, ori_height) | |
validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height))) | |
resize_flag = True | |
validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale)) | |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8)) | |
width, height = validation_image.size | |
# Generate image | |
inference_time, output = pipeline( | |
args.t_max, | |
args.t_min, | |
args.tile_diffusion, | |
args.tile_diffusion_size, | |
args.tile_diffusion_stride, | |
args.added_prompt, | |
validation_image, | |
num_inference_steps=args.num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
guidance_scale=args.guidance_scale, | |
negative_prompt=args.negative_prompt, | |
conditioning_scale=args.conditioning_scale, | |
start_steps=args.start_steps, | |
start_point=args.start_point, | |
use_vae_encode_condition=args.use_vae_encode_condition, | |
) | |
image = output.images[0] | |
# Apply color fixing if specified | |
if args.align_method != "none": | |
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix | |
fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix | |
image = fix_func(image, validation_image) | |
if resize_flag: | |
image = image.resize((ori_width*args.upscale, ori_height*args.upscale)) | |
return image | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
return None | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Textbox(label="Prompt", value="clean, high-resolution, 8k"), | |
gr.Textbox(label="Negative Prompt", value="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed"), | |
gr.Slider(minimum=1.0, maximum=20.0, value=1.0, label="Guidance Scale"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Conditioning Scale"), | |
gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Steps"), | |
gr.Number(label="Seed", value=42), | |
gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Upscale Factor"), | |
gr.Radio(["none", "wavelet", "adain"], label="Color Fix Method", value="adain"), | |
], | |
outputs=gr.Image(label="Generated Image"), | |
title="Controllable Conditional Super-Resolution", | |
description="Upload an image to enhance its resolution using CCSR." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |