|
from cProfile import label |
|
import dataclasses |
|
from distutils.command.check import check |
|
from doctest import Example |
|
import gradio as gr |
|
import os |
|
import sys |
|
import numpy as np |
|
import logging |
|
import torch |
|
import pytorch_seed |
|
import time |
|
|
|
from xml.sax import saxutils |
|
from bark.api import generate_with_settings |
|
from bark.api import save_as_prompt |
|
from util.settings import Settings |
|
|
|
|
|
from bark import SAMPLE_RATE |
|
from cloning.clonevoice import clone_voice |
|
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode |
|
from scipy.io.wavfile import write as write_wav |
|
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml |
|
from datetime import datetime |
|
from tqdm.auto import tqdm |
|
from util.helper import create_filename, add_id3_tag |
|
from swap_voice import swap_voice_from_audio |
|
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics |
|
from training.train import training_prepare_files, train |
|
|
|
settings = Settings('config.yaml') |
|
|
|
|
|
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
if selected_speaker == 'None': |
|
selected_speaker = None |
|
|
|
voice_name = selected_speaker |
|
|
|
if text == None or len(text) < 1: |
|
if selected_speaker == None: |
|
raise gr.Error('No text entered!') |
|
|
|
|
|
voicedata = _load_history_prompt(voice_name) |
|
audio_arr = codec_decode(voicedata["fine_prompt"]) |
|
result = create_filename(settings.output_folder_path, "None", "extract",".wav") |
|
save_wav(audio_arr, result) |
|
return result |
|
|
|
if batchcount < 1: |
|
batchcount = 1 |
|
|
|
|
|
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) |
|
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) |
|
use_last_generation_as_history = "Use last generation as history" in complete_settings |
|
save_last_generation = "Save generation as Voice" in complete_settings |
|
for l in range(batchcount): |
|
currentseed = seed |
|
if seed != None and seed > 2**32 - 1: |
|
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") |
|
currentseed = None |
|
if currentseed == None or currentseed <= 0: |
|
currentseed = np.random.default_rng().integers(1, 2**32 - 1) |
|
assert(0 < currentseed and currentseed < 2**32) |
|
|
|
progress(0, desc="Generating") |
|
|
|
full_generation = None |
|
|
|
all_parts = [] |
|
complete_text = "" |
|
text = text.lstrip() |
|
if is_ssml(text): |
|
list_speak = create_clips_from_ssml(text) |
|
prev_speaker = None |
|
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): |
|
selected_speaker = clip[0] |
|
|
|
if i > 0 and selected_speaker != prev_speaker: |
|
all_parts += [silencelong.copy()] |
|
prev_speaker = selected_speaker |
|
text = clip[1] |
|
text = saxutils.unescape(text) |
|
if selected_speaker == "None": |
|
selected_speaker = None |
|
|
|
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
if len(list_speak) > 1: |
|
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
all_parts += [audio_array] |
|
else: |
|
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) |
|
for i, text in tqdm(enumerate(texts), total=len(texts)): |
|
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
if quick_generation == True: |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
else: |
|
full_output = use_last_generation_as_history or save_last_generation |
|
if full_output: |
|
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) |
|
else: |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
|
|
|
|
|
|
|
|
if len(texts) > 1: |
|
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): |
|
|
|
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz") |
|
save_as_prompt(voice_name, full_generation) |
|
if use_last_generation_as_history: |
|
selected_speaker = voice_name |
|
|
|
all_parts += [audio_array] |
|
|
|
if text[-1] in "!?.\n" and i > 1: |
|
all_parts += [silenceshort.copy()] |
|
|
|
|
|
result = create_filename(settings.output_folder_path, currentseed, "final",".wav") |
|
save_wav(np.concatenate(all_parts), result) |
|
|
|
add_id3_tag(result, complete_text, selected_speaker, currentseed) |
|
|
|
return result |
|
|
|
|
|
|
|
def save_wav(audio_array, filename): |
|
write_wav(filename, SAMPLE_RATE, audio_array) |
|
|
|
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): |
|
np.savez_compressed( |
|
filename, |
|
semantic_prompt=semantic_prompt, |
|
coarse_prompt=coarse_prompt, |
|
fine_prompt=fine_prompt |
|
) |
|
|
|
|
|
def on_quick_gen_changed(checkbox): |
|
if checkbox == False: |
|
return gr.CheckboxGroup.update(visible=True) |
|
return gr.CheckboxGroup.update(visible=False) |
|
|
|
def delete_output_files(checkbox_state): |
|
if checkbox_state: |
|
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path) |
|
if os.path.exists(outputs_folder): |
|
purgedir(outputs_folder) |
|
return False |
|
|
|
|
|
|
|
def purgedir(parent): |
|
for root, dirs, files in os.walk(parent): |
|
for item in files: |
|
|
|
filespec = os.path.join(root, item) |
|
os.unlink(filespec) |
|
for item in dirs: |
|
|
|
purgedir(os.path.join(root, item)) |
|
|
|
def convert_text_to_ssml(text, selected_speaker): |
|
return build_ssml(text, selected_speaker) |
|
|
|
|
|
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)): |
|
if selected_step == prepare_training_list[0]: |
|
prepare_semantics_from_text() |
|
else: |
|
prepare_wavs_from_semantics() |
|
return None |
|
|
|
|
|
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)): |
|
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt") |
|
train("./training/data/", save_model_epoch, max_epochs) |
|
return None |
|
|
|
|
|
|
|
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): |
|
settings.selected_theme = themes |
|
settings.server_name = input_server_name |
|
settings.server_port = input_server_port |
|
settings.server_share = input_server_public |
|
settings.input_text_desired_length = input_desired_len |
|
settings.input_text_max_length = input_max_len |
|
settings.silence_sentence = input_silence_break |
|
settings.silence_speaker = input_silence_speaker |
|
settings.save() |
|
|
|
def restart(): |
|
global restart_server |
|
restart_server = True |
|
|
|
|
|
def create_version_html(): |
|
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) |
|
versions_html = f""" |
|
python: <span title="{sys.version}">{python_version}</span> |
|
• |
|
torch: {getattr(torch, '__long_version__',torch.__version__)} |
|
• |
|
gradio: {gr.__version__} |
|
""" |
|
return versions_html |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
APPTITLE = "Bark Voice Cloning UI" |
|
|
|
|
|
autolaunch = False |
|
|
|
if len(sys.argv) > 1: |
|
autolaunch = "-autolaunch" in sys.argv |
|
|
|
|
|
if torch.cuda.is_available() == False: |
|
os.environ['BARK_FORCE_CPU'] = 'True' |
|
logger.warning("No CUDA detected, fallback to CPU!") |
|
|
|
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') |
|
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') |
|
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') |
|
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') |
|
print(f'autolaunch={autolaunch}\n\n') |
|
|
|
|
|
|
|
|
|
print("Preloading Models\n") |
|
preload_models() |
|
|
|
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] |
|
tokenizer_language_list = ["de","en", "pl"] |
|
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"] |
|
|
|
seed = -1 |
|
server_name = settings.server_name |
|
if len(server_name) < 1: |
|
server_name = None |
|
server_port = settings.server_port |
|
if server_port <= 0: |
|
server_port = None |
|
global run_server |
|
global restart_server |
|
|
|
run_server = True |
|
|
|
while run_server: |
|
|
|
speakers_list = [] |
|
|
|
for root, dirs, files in os.walk("./bark/assets/prompts"): |
|
for file in files: |
|
if file.endswith(".npz"): |
|
pathpart = root.replace("./bark/assets/prompts", "") |
|
name = os.path.join(pathpart, file[:-4]) |
|
if name.startswith("/") or name.startswith("\\"): |
|
name = name[1:] |
|
speakers_list.append(name) |
|
|
|
speakers_list = sorted(speakers_list, key=lambda x: x.lower()) |
|
speakers_list.insert(0, 'None') |
|
|
|
print(f'Launching {APPTITLE} Server') |
|
|
|
|
|
|
|
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: |
|
gr.Markdown("# <center>🐶🎶⭐ - Bark Voice Cloning</center>") |
|
gr.Markdown("### <center>🤗 - If you like this space, please star my [github repo](https://github.com/KevinWang676/Bark-Voice-Cloning)</center>") |
|
gr.Markdown("### <center>🎡 - Based on [bark-gui](https://github.com/C0untFloyd/bark-gui)</center>") |
|
gr.Markdown(f""" You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a> |
|
or open in [Colab](https://colab.research.google.com/github/KevinWang676/Bark-Voice-Cloning/blob/main/Bark_Voice_Cloning_UI.ipynb) for quick start 🌟 |
|
""") |
|
|
|
with gr.Tab("🎙️ - Clone Voice"): |
|
with gr.Row(): |
|
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
initialname = "/home/user/app/bark/assets/prompts/file" |
|
output_voice = gr.Textbox(label="Filename of trained Voice (do not change the initial name)", lines=1, placeholder=initialname, value=initialname, visible=False) |
|
with gr.Column(): |
|
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1], visible=False) |
|
with gr.Row(): |
|
clone_voice_button = gr.Button("Create Voice", variant="primary") |
|
with gr.Row(): |
|
dummy = gr.Text(label="Progress") |
|
npz_file = gr.File(label=".npz file") |
|
speakers_list.insert(0, npz_file) |
|
|
|
with gr.Tab("🎵 - TTS"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
placeholder = "Enter text here." |
|
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder) |
|
convert_to_ssml_button = gr.Button("Convert Input Text to SSML") |
|
with gr.Column(): |
|
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) |
|
batchcount = gr.Number(label="Batch count", precision=0, value=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") |
|
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose “file” if you wanna use the custom voice)") |
|
|
|
with gr.Column(): |
|
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") |
|
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True) |
|
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] |
|
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) |
|
with gr.Column(): |
|
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
tts_create_button = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
hidden_checkbox = gr.Checkbox(visible=False) |
|
button_stop_generation = gr.Button("Stop generation") |
|
with gr.Row(): |
|
output_audio = gr.Audio(label="Generated Audio", type="filepath") |
|
|
|
with gr.Tab("🔮 - Voice Conversion"): |
|
with gr.Row(): |
|
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath") |
|
with gr.Row(): |
|
with gr.Column(): |
|
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) |
|
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) |
|
with gr.Column(): |
|
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose “file” if you wanna use the custom voice)") |
|
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1) |
|
with gr.Row(): |
|
swap_voice_button = gr.Button("Generate", variant="primary") |
|
with gr.Row(): |
|
output_swap = gr.Audio(label="Generated Audio", type="filepath") |
|
|
|
|
|
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) |
|
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) |
|
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) |
|
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) |
|
|
|
|
|
|
|
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap) |
|
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file]) |
|
|
|
|
|
restart_server = False |
|
try: |
|
barkgui.queue().launch(show_error=True) |
|
except: |
|
restart_server = True |
|
run_server = False |
|
try: |
|
while restart_server == False: |
|
time.sleep(1.0) |
|
except (KeyboardInterrupt, OSError): |
|
print("Keyboard interruption in main thread... closing server.") |
|
run_server = False |
|
barkgui.close() |
|
|
|
|