Spaces:
Paused
Paused
import os | |
from PIL import Image | |
import json | |
import random | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
from pytorch_lightning import seed_everything | |
from annotator.util import resize_image, HWC3 | |
from torch.nn.functional import threshold, normalize, interpolate | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation | |
from einops import rearrange, repeat | |
import argparse | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# parse= argparse.ArgumentParser() | |
# parseadd_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5') | |
# parseadd_argument('--controlnet', type=str, default='controlnet') | |
# parseadd_argument('--precision', type=str, default='fp32') | |
# = parseparse_) | |
# pretrained_model = pretrained_model | |
pretrained_model = 'runwayml/stable-diffusion-v1-5' | |
controlnet = 'checkpoint-36000/controlnet' | |
precision = 'bf16' | |
# Check for different hardware architectures | |
if torch.cuda.is_available(): | |
device = "cuda" | |
# Check for xformers | |
try: | |
import xformers | |
enable_xformers = True | |
except ImportError: | |
enable_xformers = False | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
print(f"Using device: {device}") | |
# Load models | |
if precision == 'fp32': | |
torch_dtype = torch.float32 | |
elif precision == 'fp16': | |
torch_dtype = torch.float16 | |
elif precision == 'bf16': | |
torch_dtype = torch.bfloat16 | |
else: | |
raise ValueError(f"Invalid precision: {precision}") | |
controlnet = ControlNetModel.from_pretrained(controlnet, torch_dtype=torch_dtype) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(device) | |
# Apply optimizations based on hardware | |
if device == "cuda": | |
pipe = pipe.to(device) | |
if enable_xformers: | |
pipe.enable_xformers_memory_efficient_attention() | |
print("xformers optimization enabled") | |
elif device == "mps": | |
pipe = pipe.to(device) | |
pipe.enable_attention_slicing() | |
print("Attention slicing enabled for Apple Silicon") | |
else: | |
# CPU-specific optimizations | |
pipe = pipe.to(device) | |
# pipe.enable_sequential_cpu_offload() | |
# pipe.enable_attention_slicing() | |
feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing") | |
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing") | |
def LGB_TO_RGB(gray_image, rgb_image): | |
# gray_image [H, W, 3] | |
# rgb_image [H, W, 3] | |
print("gray_image shape: ", gray_image.shape) | |
print("rgb_image shape: ", rgb_image.shape) | |
gray_image = cv2.cvtColor(gray_image, cv2.COLOR_RGB2GRAY) | |
lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB) | |
lab_image[:, :, 0] = gray_image[:, :] | |
return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB) | |
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength, | |
guidance_scale, seed, eta, threshold, save_memory=False): | |
with torch.no_grad(): | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
print("img shape: ", img.shape) | |
if C == 3: | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) | |
control = torch.from_numpy(img).to(device).float() | |
control = control / 255.0 | |
control = rearrange(control, 'h w c -> 1 c h w') | |
# control = repeat(control, 'b c h w -> b c h w', b=num_samples) | |
# control = rearrange(control, 'b h w c -> b c h w') | |
if a_prompt: | |
prompt = prompt + ', ' + a_prompt | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Generate images | |
output = pipe( | |
num_images_per_prompt=num_samples, | |
prompt=prompt, | |
image=control.to(device), | |
negative_prompt=n_prompt, | |
num_inference_steps=ddim_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
eta=eta, | |
strength=strength, | |
output_type='np', | |
).images | |
# output = einops.rearrange(output, 'b c h w -> b h w c') | |
output = (output * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
results = [output[i] for i in range(num_samples)] | |
results = [LGB_TO_RGB(img, result) for result in results] | |
# results의 각 이미지를 mask로 변환 | |
masks = [] | |
for result in results: | |
inputs = feature_extractor(images=result, return_tensors="pt") | |
outputs = segmodel(**inputs) | |
logits = outputs.logits | |
logits = logits.squeeze(0) | |
thresholded = torch.zeros_like(logits) | |
thresholded[logits > threshold] = 1 | |
mask = thresholded[1:, :, :].sum(dim=0) | |
mask = mask.unsqueeze(0).unsqueeze(0) | |
mask = interpolate(mask, size=(H, W), mode='bilinear') | |
mask = mask.detach().numpy() | |
mask = np.squeeze(mask) | |
mask = np.where(mask > threshold, 1, 0) | |
masks.append(mask) | |
# results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환. | |
# img를 channel이 3인 rgb 이미지로 변환 | |
final = [img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)] | |
# mask to 255 img | |
mask_img = [mask * 255 for mask in masks] | |
return [img] + results + mask_img + final | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Control Stable Diffusion with Gray Image") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=['upload'], type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(value="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, visible=False) | |
# num_samples = 1 | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
# guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1) | |
threshold = gr.Slider(label="Segmentation Threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
with gr.Column(): | |
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery") | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength, scale, seed, | |
eta, threshold] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=4) | |
block.queue(max_size=100) | |
block.launch(share=True) | |