Noename commited on
Commit
2de2cfe
·
verified ·
1 Parent(s): 71b38b0

Delete ldm

Browse files
Files changed (39) hide show
  1. ldm/data/__init__.py +0 -0
  2. ldm/data/util.py +0 -24
  3. ldm/models/autoencoder.py +0 -219
  4. ldm/models/diffusion/__init__.py +0 -0
  5. ldm/models/diffusion/ddim.py +0 -336
  6. ldm/models/diffusion/ddpm.py +0 -1797
  7. ldm/models/diffusion/dpm_solver/__init__.py +0 -1
  8. ldm/models/diffusion/dpm_solver/dpm_solver.py +0 -1154
  9. ldm/models/diffusion/dpm_solver/sampler.py +0 -87
  10. ldm/models/diffusion/plms.py +0 -244
  11. ldm/models/diffusion/sampling_util.py +0 -22
  12. ldm/modules/attention.py +0 -341
  13. ldm/modules/diffusionmodules/__init__.py +0 -0
  14. ldm/modules/diffusionmodules/model.py +0 -852
  15. ldm/modules/diffusionmodules/openaimodel.py +0 -786
  16. ldm/modules/diffusionmodules/upscaling.py +0 -81
  17. ldm/modules/diffusionmodules/util.py +0 -270
  18. ldm/modules/distributions/__init__.py +0 -0
  19. ldm/modules/distributions/distributions.py +0 -92
  20. ldm/modules/ema.py +0 -80
  21. ldm/modules/encoders/__init__.py +0 -0
  22. ldm/modules/encoders/modules.py +0 -213
  23. ldm/modules/image_degradation/__init__.py +0 -2
  24. ldm/modules/image_degradation/bsrgan.py +0 -730
  25. ldm/modules/image_degradation/bsrgan_light.py +0 -651
  26. ldm/modules/image_degradation/utils/test.png +0 -0
  27. ldm/modules/image_degradation/utils_image.py +0 -916
  28. ldm/modules/midas/__init__.py +0 -0
  29. ldm/modules/midas/api.py +0 -170
  30. ldm/modules/midas/midas/__init__.py +0 -0
  31. ldm/modules/midas/midas/base_model.py +0 -16
  32. ldm/modules/midas/midas/blocks.py +0 -342
  33. ldm/modules/midas/midas/dpt_depth.py +0 -109
  34. ldm/modules/midas/midas/midas_net.py +0 -76
  35. ldm/modules/midas/midas/midas_net_custom.py +0 -128
  36. ldm/modules/midas/midas/transforms.py +0 -234
  37. ldm/modules/midas/midas/vit.py +0 -491
  38. ldm/modules/midas/utils.py +0 -189
  39. ldm/util.py +0 -197
ldm/data/__init__.py DELETED
File without changes
ldm/data/util.py DELETED
@@ -1,24 +0,0 @@
1
- import torch
2
-
3
- from ldm.modules.midas.api import load_midas_transform
4
-
5
-
6
- class AddMiDaS(object):
7
- def __init__(self, model_type):
8
- super().__init__()
9
- self.transform = load_midas_transform(model_type)
10
-
11
- def pt2np(self, x):
12
- x = ((x + 1.0) * .5).detach().cpu().numpy()
13
- return x
14
-
15
- def np2pt(self, x):
16
- x = torch.from_numpy(x) * 2 - 1.
17
- return x
18
-
19
- def __call__(self, sample):
20
- # sample['jpg'] is tensor hwc in [-1, 1] at this point
21
- x = self.pt2np(sample['jpg'])
22
- x = self.transform({"image": x})["image"]
23
- sample['midas_in'] = x
24
- return sample
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/autoencoder.py DELETED
@@ -1,219 +0,0 @@
1
- import torch
2
- import pytorch_lightning as pl
3
- import torch.nn.functional as F
4
- from contextlib import contextmanager
5
-
6
- from ldm.modules.diffusionmodules.model import Encoder, Decoder
7
- from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
-
9
- from ldm.util import instantiate_from_config
10
- from ldm.modules.ema import LitEma
11
-
12
-
13
- class AutoencoderKL(pl.LightningModule):
14
- def __init__(self,
15
- ddconfig,
16
- lossconfig,
17
- embed_dim,
18
- ckpt_path=None,
19
- ignore_keys=[],
20
- image_key="image",
21
- colorize_nlabels=None,
22
- monitor=None,
23
- ema_decay=None,
24
- learn_logvar=False
25
- ):
26
- super().__init__()
27
- self.learn_logvar = learn_logvar
28
- self.image_key = image_key
29
- self.encoder = Encoder(**ddconfig)
30
- self.decoder = Decoder(**ddconfig)
31
- self.loss = instantiate_from_config(lossconfig)
32
- assert ddconfig["double_z"]
33
- self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
34
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
35
- self.embed_dim = embed_dim
36
- if colorize_nlabels is not None:
37
- assert type(colorize_nlabels)==int
38
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
39
- if monitor is not None:
40
- self.monitor = monitor
41
-
42
- self.use_ema = ema_decay is not None
43
- if self.use_ema:
44
- self.ema_decay = ema_decay
45
- assert 0. < ema_decay < 1.
46
- self.model_ema = LitEma(self, decay=ema_decay)
47
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
48
-
49
- if ckpt_path is not None:
50
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
51
-
52
- def init_from_ckpt(self, path, ignore_keys=list()):
53
- sd = torch.load(path, map_location="cpu")["state_dict"]
54
- keys = list(sd.keys())
55
- for k in keys:
56
- for ik in ignore_keys:
57
- if k.startswith(ik):
58
- print("Deleting key {} from state_dict.".format(k))
59
- del sd[k]
60
- self.load_state_dict(sd, strict=False)
61
- print(f"Restored from {path}")
62
-
63
- @contextmanager
64
- def ema_scope(self, context=None):
65
- if self.use_ema:
66
- self.model_ema.store(self.parameters())
67
- self.model_ema.copy_to(self)
68
- if context is not None:
69
- print(f"{context}: Switched to EMA weights")
70
- try:
71
- yield None
72
- finally:
73
- if self.use_ema:
74
- self.model_ema.restore(self.parameters())
75
- if context is not None:
76
- print(f"{context}: Restored training weights")
77
-
78
- def on_train_batch_end(self, *args, **kwargs):
79
- if self.use_ema:
80
- self.model_ema(self)
81
-
82
- def encode(self, x):
83
- h = self.encoder(x)
84
- moments = self.quant_conv(h)
85
- posterior = DiagonalGaussianDistribution(moments)
86
- return posterior
87
-
88
- def decode(self, z):
89
- z = self.post_quant_conv(z)
90
- dec = self.decoder(z)
91
- return dec
92
-
93
- def forward(self, input, sample_posterior=True):
94
- posterior = self.encode(input)
95
- if sample_posterior:
96
- z = posterior.sample()
97
- else:
98
- z = posterior.mode()
99
- dec = self.decode(z)
100
- return dec, posterior
101
-
102
- def get_input(self, batch, k):
103
- x = batch[k]
104
- if len(x.shape) == 3:
105
- x = x[..., None]
106
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
107
- return x
108
-
109
- def training_step(self, batch, batch_idx, optimizer_idx):
110
- inputs = self.get_input(batch, self.image_key)
111
- reconstructions, posterior = self(inputs)
112
-
113
- if optimizer_idx == 0:
114
- # train encoder+decoder+logvar
115
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
116
- last_layer=self.get_last_layer(), split="train")
117
- self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
118
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
119
- return aeloss
120
-
121
- if optimizer_idx == 1:
122
- # train the discriminator
123
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
124
- last_layer=self.get_last_layer(), split="train")
125
-
126
- self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
127
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
128
- return discloss
129
-
130
- def validation_step(self, batch, batch_idx):
131
- log_dict = self._validation_step(batch, batch_idx)
132
- with self.ema_scope():
133
- log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
134
- return log_dict
135
-
136
- def _validation_step(self, batch, batch_idx, postfix=""):
137
- inputs = self.get_input(batch, self.image_key)
138
- reconstructions, posterior = self(inputs)
139
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
140
- last_layer=self.get_last_layer(), split="val"+postfix)
141
-
142
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
143
- last_layer=self.get_last_layer(), split="val"+postfix)
144
-
145
- self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
146
- self.log_dict(log_dict_ae)
147
- self.log_dict(log_dict_disc)
148
- return self.log_dict
149
-
150
- def configure_optimizers(self):
151
- lr = self.learning_rate
152
- ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
153
- self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
154
- if self.learn_logvar:
155
- print(f"{self.__class__.__name__}: Learning logvar")
156
- ae_params_list.append(self.loss.logvar)
157
- opt_ae = torch.optim.Adam(ae_params_list,
158
- lr=lr, betas=(0.5, 0.9))
159
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
160
- lr=lr, betas=(0.5, 0.9))
161
- return [opt_ae, opt_disc], []
162
-
163
- def get_last_layer(self):
164
- return self.decoder.conv_out.weight
165
-
166
- @torch.no_grad()
167
- def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
168
- log = dict()
169
- x = self.get_input(batch, self.image_key)
170
- x = x.to(self.device)
171
- if not only_inputs:
172
- xrec, posterior = self(x)
173
- if x.shape[1] > 3:
174
- # colorize with random projection
175
- assert xrec.shape[1] > 3
176
- x = self.to_rgb(x)
177
- xrec = self.to_rgb(xrec)
178
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
179
- log["reconstructions"] = xrec
180
- if log_ema or self.use_ema:
181
- with self.ema_scope():
182
- xrec_ema, posterior_ema = self(x)
183
- if x.shape[1] > 3:
184
- # colorize with random projection
185
- assert xrec_ema.shape[1] > 3
186
- xrec_ema = self.to_rgb(xrec_ema)
187
- log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
188
- log["reconstructions_ema"] = xrec_ema
189
- log["inputs"] = x
190
- return log
191
-
192
- def to_rgb(self, x):
193
- assert self.image_key == "segmentation"
194
- if not hasattr(self, "colorize"):
195
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
196
- x = F.conv2d(x, weight=self.colorize)
197
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
198
- return x
199
-
200
-
201
- class IdentityFirstStage(torch.nn.Module):
202
- def __init__(self, *args, vq_interface=False, **kwargs):
203
- self.vq_interface = vq_interface
204
- super().__init__()
205
-
206
- def encode(self, x, *args, **kwargs):
207
- return x
208
-
209
- def decode(self, x, *args, **kwargs):
210
- return x
211
-
212
- def quantize(self, x, *args, **kwargs):
213
- if self.vq_interface:
214
- return x, None, [None, None, None]
215
- return x
216
-
217
- def forward(self, x, *args, **kwargs):
218
- return x
219
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/__init__.py DELETED
File without changes
ldm/models/diffusion/ddim.py DELETED
@@ -1,336 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
-
7
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
-
9
-
10
- class DDIMSampler(object):
11
- def __init__(self, model, schedule="linear", **kwargs):
12
- super().__init__()
13
- self.model = model
14
- self.ddpm_num_timesteps = model.num_timesteps
15
- self.schedule = schedule
16
-
17
- def register_buffer(self, name, attr):
18
- if type(attr) == torch.Tensor:
19
- if attr.device != torch.device("cuda"):
20
- attr = attr.to(torch.device("cuda"))
21
- setattr(self, name, attr)
22
-
23
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
- alphas_cumprod = self.model.alphas_cumprod
27
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
-
30
- self.register_buffer('betas', to_torch(self.model.betas))
31
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
-
34
- # calculations for diffusion q(x_t | x_{t-1}) and others
35
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
-
41
- # ddim sampling parameters
42
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
- ddim_timesteps=self.ddim_timesteps,
44
- eta=ddim_eta,verbose=verbose)
45
- self.register_buffer('ddim_sigmas', ddim_sigmas)
46
- self.register_buffer('ddim_alphas', ddim_alphas)
47
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
-
54
- @torch.no_grad()
55
- def sample(self,
56
- S,
57
- batch_size,
58
- shape,
59
- conditioning=None,
60
- callback=None,
61
- normals_sequence=None,
62
- img_callback=None,
63
- quantize_x0=False,
64
- eta=0.,
65
- mask=None,
66
- x0=None,
67
- temperature=1.,
68
- noise_dropout=0.,
69
- score_corrector=None,
70
- corrector_kwargs=None,
71
- verbose=True,
72
- x_T=None,
73
- log_every_t=100,
74
- unconditional_guidance_scale=1.,
75
- unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
- dynamic_threshold=None,
77
- ucg_schedule=None,
78
- **kwargs
79
- ):
80
- if conditioning is not None:
81
- if isinstance(conditioning, dict):
82
- ctmp = conditioning[list(conditioning.keys())[0]]
83
- while isinstance(ctmp, list): ctmp = ctmp[0]
84
- cbs = ctmp.shape[0]
85
- if cbs != batch_size:
86
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
-
88
- elif isinstance(conditioning, list):
89
- for ctmp in conditioning:
90
- if ctmp.shape[0] != batch_size:
91
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
-
93
- else:
94
- if conditioning.shape[0] != batch_size:
95
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
-
97
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
- # sampling
99
- C, H, W = shape
100
- size = (batch_size, C, H, W)
101
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
-
103
- samples, intermediates = self.ddim_sampling(conditioning, size,
104
- callback=callback,
105
- img_callback=img_callback,
106
- quantize_denoised=quantize_x0,
107
- mask=mask, x0=x0,
108
- ddim_use_original_steps=False,
109
- noise_dropout=noise_dropout,
110
- temperature=temperature,
111
- score_corrector=score_corrector,
112
- corrector_kwargs=corrector_kwargs,
113
- x_T=x_T,
114
- log_every_t=log_every_t,
115
- unconditional_guidance_scale=unconditional_guidance_scale,
116
- unconditional_conditioning=unconditional_conditioning,
117
- dynamic_threshold=dynamic_threshold,
118
- ucg_schedule=ucg_schedule
119
- )
120
- return samples, intermediates
121
-
122
- @torch.no_grad()
123
- def ddim_sampling(self, cond, shape,
124
- x_T=None, ddim_use_original_steps=False,
125
- callback=None, timesteps=None, quantize_denoised=False,
126
- mask=None, x0=None, img_callback=None, log_every_t=100,
127
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
- unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
- ucg_schedule=None):
130
- device = self.model.betas.device
131
- b = shape[0]
132
- if x_T is None:
133
- img = torch.randn(shape, device=device)
134
- else:
135
- img = x_T
136
-
137
- if timesteps is None:
138
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
- elif timesteps is not None and not ddim_use_original_steps:
140
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
- timesteps = self.ddim_timesteps[:subset_end]
142
-
143
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
- time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
- print(f"Running DDIM Sampling with {total_steps} timesteps")
147
-
148
- iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
-
150
- for i, step in enumerate(iterator):
151
- index = total_steps - i - 1
152
- ts = torch.full((b,), step, device=device, dtype=torch.long)
153
-
154
- if mask is not None:
155
- assert x0 is not None
156
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
- img = img_orig * mask + (1. - mask) * img
158
-
159
- if ucg_schedule is not None:
160
- assert len(ucg_schedule) == len(time_range)
161
- unconditional_guidance_scale = ucg_schedule[i]
162
-
163
- outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
- quantize_denoised=quantize_denoised, temperature=temperature,
165
- noise_dropout=noise_dropout, score_corrector=score_corrector,
166
- corrector_kwargs=corrector_kwargs,
167
- unconditional_guidance_scale=unconditional_guidance_scale,
168
- unconditional_conditioning=unconditional_conditioning,
169
- dynamic_threshold=dynamic_threshold)
170
- img, pred_x0 = outs
171
- if callback: callback(i)
172
- if img_callback: img_callback(pred_x0, i)
173
-
174
- if index % log_every_t == 0 or index == total_steps - 1:
175
- intermediates['x_inter'].append(img)
176
- intermediates['pred_x0'].append(pred_x0)
177
-
178
- return img, intermediates
179
-
180
- @torch.no_grad()
181
- def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
- unconditional_guidance_scale=1., unconditional_conditioning=None,
184
- dynamic_threshold=None):
185
- b, *_, device = *x.shape, x.device
186
-
187
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
- model_output = self.model.apply_model(x, t, c)
189
- else:
190
- x_in = torch.cat([x] * 2)
191
- t_in = torch.cat([t] * 2)
192
- if isinstance(c, dict):
193
- assert isinstance(unconditional_conditioning, dict)
194
- c_in = dict()
195
- for k in c:
196
- if isinstance(c[k], list):
197
- c_in[k] = [torch.cat([
198
- unconditional_conditioning[k][i],
199
- c[k][i]]) for i in range(len(c[k]))]
200
- else:
201
- c_in[k] = torch.cat([
202
- unconditional_conditioning[k],
203
- c[k]])
204
- elif isinstance(c, list):
205
- c_in = list()
206
- assert isinstance(unconditional_conditioning, list)
207
- for i in range(len(c)):
208
- c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
209
- else:
210
- c_in = torch.cat([unconditional_conditioning, c])
211
- model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
212
- model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
213
-
214
- if self.model.parameterization == "v":
215
- e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
216
- else:
217
- e_t = model_output
218
-
219
- if score_corrector is not None:
220
- assert self.model.parameterization == "eps", 'not implemented'
221
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
222
-
223
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
224
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
225
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
226
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
227
- # select parameters corresponding to the currently considered timestep
228
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
229
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
230
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
231
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
232
-
233
- # current prediction for x_0
234
- if self.model.parameterization != "v":
235
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
236
- else:
237
- pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
238
-
239
- if quantize_denoised:
240
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
241
-
242
- if dynamic_threshold is not None:
243
- raise NotImplementedError()
244
-
245
- # direction pointing to x_t
246
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
247
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
248
- if noise_dropout > 0.:
249
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
250
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
251
- return x_prev, pred_x0
252
-
253
- @torch.no_grad()
254
- def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
255
- unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
256
- num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
257
-
258
- assert t_enc <= num_reference_steps
259
- num_steps = t_enc
260
-
261
- if use_original_steps:
262
- alphas_next = self.alphas_cumprod[:num_steps]
263
- alphas = self.alphas_cumprod_prev[:num_steps]
264
- else:
265
- alphas_next = self.ddim_alphas[:num_steps]
266
- alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
267
-
268
- x_next = x0
269
- intermediates = []
270
- inter_steps = []
271
- for i in tqdm(range(num_steps), desc='Encoding Image'):
272
- t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
273
- if unconditional_guidance_scale == 1.:
274
- noise_pred = self.model.apply_model(x_next, t, c)
275
- else:
276
- assert unconditional_conditioning is not None
277
- e_t_uncond, noise_pred = torch.chunk(
278
- self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
279
- torch.cat((unconditional_conditioning, c))), 2)
280
- noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
281
-
282
- xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
283
- weighted_noise_pred = alphas_next[i].sqrt() * (
284
- (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
285
- x_next = xt_weighted + weighted_noise_pred
286
- if return_intermediates and i % (
287
- num_steps // return_intermediates) == 0 and i < num_steps - 1:
288
- intermediates.append(x_next)
289
- inter_steps.append(i)
290
- elif return_intermediates and i >= num_steps - 2:
291
- intermediates.append(x_next)
292
- inter_steps.append(i)
293
- if callback: callback(i)
294
-
295
- out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
296
- if return_intermediates:
297
- out.update({'intermediates': intermediates})
298
- return x_next, out
299
-
300
- @torch.no_grad()
301
- def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
302
- # fast, but does not allow for exact reconstruction
303
- # t serves as an index to gather the correct alphas
304
- if use_original_steps:
305
- sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
306
- sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
307
- else:
308
- sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
309
- sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
310
-
311
- if noise is None:
312
- noise = torch.randn_like(x0)
313
- return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
314
- extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
315
-
316
- @torch.no_grad()
317
- def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
318
- use_original_steps=False, callback=None):
319
-
320
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
321
- timesteps = timesteps[:t_start]
322
-
323
- time_range = np.flip(timesteps)
324
- total_steps = timesteps.shape[0]
325
- print(f"Running DDIM Sampling with {total_steps} timesteps")
326
-
327
- iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
328
- x_dec = x_latent
329
- for i, step in enumerate(iterator):
330
- index = total_steps - i - 1
331
- ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
332
- x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
333
- unconditional_guidance_scale=unconditional_guidance_scale,
334
- unconditional_conditioning=unconditional_conditioning)
335
- if callback: callback(i)
336
- return x_dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/ddpm.py DELETED
@@ -1,1797 +0,0 @@
1
- """
2
- wild mixture of
3
- https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
- https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
- https://github.com/CompVis/taming-transformers
6
- -- merci
7
- """
8
-
9
- import torch
10
- import torch.nn as nn
11
- import numpy as np
12
- import pytorch_lightning as pl
13
- from torch.optim.lr_scheduler import LambdaLR
14
- from einops import rearrange, repeat
15
- from contextlib import contextmanager, nullcontext
16
- from functools import partial
17
- import itertools
18
- from tqdm import tqdm
19
- from torchvision.utils import make_grid
20
- from pytorch_lightning.utilities.distributed import rank_zero_only
21
- from omegaconf import ListConfig
22
-
23
- from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
- from ldm.modules.ema import LitEma
25
- from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
- from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
27
- from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
- from ldm.models.diffusion.ddim import DDIMSampler
29
-
30
-
31
- __conditioning_keys__ = {'concat': 'c_concat',
32
- 'crossattn': 'c_crossattn',
33
- 'adm': 'y'}
34
-
35
-
36
- def disabled_train(self, mode=True):
37
- """Overwrite model.train with this function to make sure train/eval mode
38
- does not change anymore."""
39
- return self
40
-
41
-
42
- def uniform_on_device(r1, r2, shape, device):
43
- return (r1 - r2) * torch.rand(*shape, device=device) + r2
44
-
45
-
46
- class DDPM(pl.LightningModule):
47
- # classic DDPM with Gaussian diffusion, in image space
48
- def __init__(self,
49
- unet_config,
50
- timesteps=1000,
51
- beta_schedule="linear",
52
- loss_type="l2",
53
- ckpt_path=None,
54
- ignore_keys=[],
55
- load_only_unet=False,
56
- monitor="val/loss",
57
- use_ema=True,
58
- first_stage_key="image",
59
- image_size=256,
60
- channels=3,
61
- log_every_t=100,
62
- clip_denoised=True,
63
- linear_start=1e-4,
64
- linear_end=2e-2,
65
- cosine_s=8e-3,
66
- given_betas=None,
67
- original_elbo_weight=0.,
68
- v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
69
- l_simple_weight=1.,
70
- conditioning_key=None,
71
- parameterization="eps", # all assuming fixed variance schedules
72
- scheduler_config=None,
73
- use_positional_encodings=False,
74
- learn_logvar=False,
75
- logvar_init=0.,
76
- make_it_fit=False,
77
- ucg_training=None,
78
- reset_ema=False,
79
- reset_num_ema_updates=False,
80
- ):
81
- super().__init__()
82
- assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
83
- self.parameterization = parameterization
84
- print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
85
- self.cond_stage_model = None
86
- self.clip_denoised = clip_denoised
87
- self.log_every_t = log_every_t
88
- self.first_stage_key = first_stage_key
89
- self.image_size = image_size # try conv?
90
- self.channels = channels
91
- self.use_positional_encodings = use_positional_encodings
92
- self.model = DiffusionWrapper(unet_config, conditioning_key)
93
- count_params(self.model, verbose=True)
94
- self.use_ema = use_ema
95
- if self.use_ema:
96
- self.model_ema = LitEma(self.model)
97
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
98
-
99
- self.use_scheduler = scheduler_config is not None
100
- if self.use_scheduler:
101
- self.scheduler_config = scheduler_config
102
-
103
- self.v_posterior = v_posterior
104
- self.original_elbo_weight = original_elbo_weight
105
- self.l_simple_weight = l_simple_weight
106
-
107
- if monitor is not None:
108
- self.monitor = monitor
109
- self.make_it_fit = make_it_fit
110
- if reset_ema: assert exists(ckpt_path)
111
- if ckpt_path is not None:
112
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
113
- if reset_ema:
114
- assert self.use_ema
115
- print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
116
- self.model_ema = LitEma(self.model)
117
- if reset_num_ema_updates:
118
- print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
119
- assert self.use_ema
120
- self.model_ema.reset_num_updates()
121
-
122
- self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
123
- linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
124
-
125
- self.loss_type = loss_type
126
-
127
- self.learn_logvar = learn_logvar
128
- logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
129
- if self.learn_logvar:
130
- self.logvar = nn.Parameter(self.logvar, requires_grad=True)
131
- else:
132
- self.register_buffer('logvar', logvar)
133
-
134
- self.ucg_training = ucg_training or dict()
135
- if self.ucg_training:
136
- self.ucg_prng = np.random.RandomState()
137
-
138
- def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
139
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
140
- if exists(given_betas):
141
- betas = given_betas
142
- else:
143
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
144
- cosine_s=cosine_s)
145
- alphas = 1. - betas
146
- alphas_cumprod = np.cumprod(alphas, axis=0)
147
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
148
-
149
- timesteps, = betas.shape
150
- self.num_timesteps = int(timesteps)
151
- self.linear_start = linear_start
152
- self.linear_end = linear_end
153
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
154
-
155
- to_torch = partial(torch.tensor, dtype=torch.float32)
156
-
157
- self.register_buffer('betas', to_torch(betas))
158
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
159
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
160
-
161
- # calculations for diffusion q(x_t | x_{t-1}) and others
162
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
163
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
164
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
165
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
166
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
167
-
168
- # calculations for posterior q(x_{t-1} | x_t, x_0)
169
- posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
170
- 1. - alphas_cumprod) + self.v_posterior * betas
171
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
172
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
173
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
174
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
175
- self.register_buffer('posterior_mean_coef1', to_torch(
176
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
177
- self.register_buffer('posterior_mean_coef2', to_torch(
178
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
179
-
180
- if self.parameterization == "eps":
181
- lvlb_weights = self.betas ** 2 / (
182
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
183
- elif self.parameterization == "x0":
184
- lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
185
- elif self.parameterization == "v":
186
- lvlb_weights = torch.ones_like(self.betas ** 2 / (
187
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
188
- else:
189
- raise NotImplementedError("mu not supported")
190
- lvlb_weights[0] = lvlb_weights[1]
191
- self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
192
- assert not torch.isnan(self.lvlb_weights).all()
193
-
194
- @contextmanager
195
- def ema_scope(self, context=None):
196
- if self.use_ema:
197
- self.model_ema.store(self.model.parameters())
198
- self.model_ema.copy_to(self.model)
199
- if context is not None:
200
- print(f"{context}: Switched to EMA weights")
201
- try:
202
- yield None
203
- finally:
204
- if self.use_ema:
205
- self.model_ema.restore(self.model.parameters())
206
- if context is not None:
207
- print(f"{context}: Restored training weights")
208
-
209
- @torch.no_grad()
210
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
211
- sd = torch.load(path, map_location="cpu")
212
- if "state_dict" in list(sd.keys()):
213
- sd = sd["state_dict"]
214
- keys = list(sd.keys())
215
- for k in keys:
216
- for ik in ignore_keys:
217
- if k.startswith(ik):
218
- print("Deleting key {} from state_dict.".format(k))
219
- del sd[k]
220
- if self.make_it_fit:
221
- n_params = len([name for name, _ in
222
- itertools.chain(self.named_parameters(),
223
- self.named_buffers())])
224
- for name, param in tqdm(
225
- itertools.chain(self.named_parameters(),
226
- self.named_buffers()),
227
- desc="Fitting old weights to new weights",
228
- total=n_params
229
- ):
230
- if not name in sd:
231
- continue
232
- old_shape = sd[name].shape
233
- new_shape = param.shape
234
- assert len(old_shape) == len(new_shape)
235
- if len(new_shape) > 2:
236
- # we only modify first two axes
237
- assert new_shape[2:] == old_shape[2:]
238
- # assumes first axis corresponds to output dim
239
- if not new_shape == old_shape:
240
- new_param = param.clone()
241
- old_param = sd[name]
242
- if len(new_shape) == 1:
243
- for i in range(new_param.shape[0]):
244
- new_param[i] = old_param[i % old_shape[0]]
245
- elif len(new_shape) >= 2:
246
- for i in range(new_param.shape[0]):
247
- for j in range(new_param.shape[1]):
248
- new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
249
-
250
- n_used_old = torch.ones(old_shape[1])
251
- for j in range(new_param.shape[1]):
252
- n_used_old[j % old_shape[1]] += 1
253
- n_used_new = torch.zeros(new_shape[1])
254
- for j in range(new_param.shape[1]):
255
- n_used_new[j] = n_used_old[j % old_shape[1]]
256
-
257
- n_used_new = n_used_new[None, :]
258
- while len(n_used_new.shape) < len(new_shape):
259
- n_used_new = n_used_new.unsqueeze(-1)
260
- new_param /= n_used_new
261
-
262
- sd[name] = new_param
263
-
264
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
265
- sd, strict=False)
266
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
267
- if len(missing) > 0:
268
- print(f"Missing Keys:\n {missing}")
269
- if len(unexpected) > 0:
270
- print(f"\nUnexpected Keys:\n {unexpected}")
271
-
272
- def q_mean_variance(self, x_start, t):
273
- """
274
- Get the distribution q(x_t | x_0).
275
- :param x_start: the [N x C x ...] tensor of noiseless inputs.
276
- :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
277
- :return: A tuple (mean, variance, log_variance), all of x_start's shape.
278
- """
279
- mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
280
- variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
281
- log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
282
- return mean, variance, log_variance
283
-
284
- def predict_start_from_noise(self, x_t, t, noise):
285
- return (
286
- extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
287
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
288
- )
289
-
290
- def predict_start_from_z_and_v(self, x_t, t, v):
291
- # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
292
- # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
293
- return (
294
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
295
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
296
- )
297
-
298
- def predict_eps_from_z_and_v(self, x_t, t, v):
299
- return (
300
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
301
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
302
- )
303
-
304
- def q_posterior(self, x_start, x_t, t):
305
- posterior_mean = (
306
- extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
307
- extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
308
- )
309
- posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
310
- posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
311
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
312
-
313
- def p_mean_variance(self, x, t, clip_denoised: bool):
314
- model_out = self.model(x, t)
315
- if self.parameterization == "eps":
316
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
317
- elif self.parameterization == "x0":
318
- x_recon = model_out
319
- if clip_denoised:
320
- x_recon.clamp_(-1., 1.)
321
-
322
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
323
- return model_mean, posterior_variance, posterior_log_variance
324
-
325
- @torch.no_grad()
326
- def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
327
- b, *_, device = *x.shape, x.device
328
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
329
- noise = noise_like(x.shape, device, repeat_noise)
330
- # no noise when t == 0
331
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
332
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
333
-
334
- @torch.no_grad()
335
- def p_sample_loop(self, shape, return_intermediates=False):
336
- device = self.betas.device
337
- b = shape[0]
338
- img = torch.randn(shape, device=device)
339
- intermediates = [img]
340
- for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
341
- img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
342
- clip_denoised=self.clip_denoised)
343
- if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
344
- intermediates.append(img)
345
- if return_intermediates:
346
- return img, intermediates
347
- return img
348
-
349
- @torch.no_grad()
350
- def sample(self, batch_size=16, return_intermediates=False):
351
- image_size = self.image_size
352
- channels = self.channels
353
- return self.p_sample_loop((batch_size, channels, image_size, image_size),
354
- return_intermediates=return_intermediates)
355
-
356
- def q_sample(self, x_start, t, noise=None):
357
- noise = default(noise, lambda: torch.randn_like(x_start))
358
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
359
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
360
-
361
- def get_v(self, x, noise, t):
362
- return (
363
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
364
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
365
- )
366
-
367
- def get_loss(self, pred, target, mean=True):
368
- if self.loss_type == 'l1':
369
- loss = (target - pred).abs()
370
- if mean:
371
- loss = loss.mean()
372
- elif self.loss_type == 'l2':
373
- if mean:
374
- loss = torch.nn.functional.mse_loss(target, pred)
375
- else:
376
- loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
377
- else:
378
- raise NotImplementedError("unknown loss type '{loss_type}'")
379
-
380
- return loss
381
-
382
- def p_losses(self, x_start, t, noise=None):
383
- noise = default(noise, lambda: torch.randn_like(x_start))
384
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
385
- model_out = self.model(x_noisy, t)
386
-
387
- loss_dict = {}
388
- if self.parameterization == "eps":
389
- target = noise
390
- elif self.parameterization == "x0":
391
- target = x_start
392
- elif self.parameterization == "v":
393
- target = self.get_v(x_start, noise, t)
394
- else:
395
- raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
396
-
397
- loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
398
-
399
- log_prefix = 'train' if self.training else 'val'
400
-
401
- loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
402
- loss_simple = loss.mean() * self.l_simple_weight
403
-
404
- loss_vlb = (self.lvlb_weights[t] * loss).mean()
405
- loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
406
-
407
- loss = loss_simple + self.original_elbo_weight * loss_vlb
408
-
409
- loss_dict.update({f'{log_prefix}/loss': loss})
410
-
411
- return loss, loss_dict
412
-
413
- def forward(self, x, *args, **kwargs):
414
- # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
415
- # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
416
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
417
- return self.p_losses(x, t, *args, **kwargs)
418
-
419
- def get_input(self, batch, k):
420
- x = batch[k]
421
- if len(x.shape) == 3:
422
- x = x[..., None]
423
- x = rearrange(x, 'b h w c -> b c h w')
424
- x = x.to(memory_format=torch.contiguous_format).float()
425
- return x
426
-
427
- def shared_step(self, batch):
428
- x = self.get_input(batch, self.first_stage_key)
429
- loss, loss_dict = self(x)
430
- return loss, loss_dict
431
-
432
- def training_step(self, batch, batch_idx):
433
- for k in self.ucg_training:
434
- p = self.ucg_training[k]["p"]
435
- val = self.ucg_training[k]["val"]
436
- if val is None:
437
- val = ""
438
- for i in range(len(batch[k])):
439
- if self.ucg_prng.choice(2, p=[1 - p, p]):
440
- batch[k][i] = val
441
-
442
- loss, loss_dict = self.shared_step(batch)
443
-
444
- self.log_dict(loss_dict, prog_bar=True,
445
- logger=True, on_step=True, on_epoch=True)
446
-
447
- self.log("global_step", self.global_step,
448
- prog_bar=True, logger=True, on_step=True, on_epoch=False)
449
-
450
- if self.use_scheduler:
451
- lr = self.optimizers().param_groups[0]['lr']
452
- self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
453
-
454
- return loss
455
-
456
- @torch.no_grad()
457
- def validation_step(self, batch, batch_idx):
458
- _, loss_dict_no_ema = self.shared_step(batch)
459
- with self.ema_scope():
460
- _, loss_dict_ema = self.shared_step(batch)
461
- loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
462
- self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
463
- self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
464
-
465
- def on_train_batch_end(self, *args, **kwargs):
466
- if self.use_ema:
467
- self.model_ema(self.model)
468
-
469
- def _get_rows_from_list(self, samples):
470
- n_imgs_per_row = len(samples)
471
- denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
472
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
473
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
474
- return denoise_grid
475
-
476
- @torch.no_grad()
477
- def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
478
- log = dict()
479
- x = self.get_input(batch, self.first_stage_key)
480
- N = min(x.shape[0], N)
481
- n_row = min(x.shape[0], n_row)
482
- x = x.to(self.device)[:N]
483
- log["inputs"] = x
484
-
485
- # get diffusion row
486
- diffusion_row = list()
487
- x_start = x[:n_row]
488
-
489
- for t in range(self.num_timesteps):
490
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
491
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
492
- t = t.to(self.device).long()
493
- noise = torch.randn_like(x_start)
494
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
495
- diffusion_row.append(x_noisy)
496
-
497
- log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
498
-
499
- if sample:
500
- # get denoise row
501
- with self.ema_scope("Plotting"):
502
- samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
503
-
504
- log["samples"] = samples
505
- log["denoise_row"] = self._get_rows_from_list(denoise_row)
506
-
507
- if return_keys:
508
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
509
- return log
510
- else:
511
- return {key: log[key] for key in return_keys}
512
- return log
513
-
514
- def configure_optimizers(self):
515
- lr = self.learning_rate
516
- params = list(self.model.parameters())
517
- if self.learn_logvar:
518
- params = params + [self.logvar]
519
- opt = torch.optim.AdamW(params, lr=lr)
520
- return opt
521
-
522
-
523
- class LatentDiffusion(DDPM):
524
- """main class"""
525
-
526
- def __init__(self,
527
- first_stage_config,
528
- cond_stage_config,
529
- num_timesteps_cond=None,
530
- cond_stage_key="image",
531
- cond_stage_trainable=False,
532
- concat_mode=True,
533
- cond_stage_forward=None,
534
- conditioning_key=None,
535
- scale_factor=1.0,
536
- scale_by_std=False,
537
- force_null_conditioning=False,
538
- *args, **kwargs):
539
- self.force_null_conditioning = force_null_conditioning
540
- self.num_timesteps_cond = default(num_timesteps_cond, 1)
541
- self.scale_by_std = scale_by_std
542
- assert self.num_timesteps_cond <= kwargs['timesteps']
543
- # for backwards compatibility after implementation of DiffusionWrapper
544
- if conditioning_key is None:
545
- conditioning_key = 'concat' if concat_mode else 'crossattn'
546
- if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
547
- conditioning_key = None
548
- ckpt_path = kwargs.pop("ckpt_path", None)
549
- reset_ema = kwargs.pop("reset_ema", False)
550
- reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
551
- ignore_keys = kwargs.pop("ignore_keys", [])
552
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
553
- self.concat_mode = concat_mode
554
- self.cond_stage_trainable = cond_stage_trainable
555
- self.cond_stage_key = cond_stage_key
556
- try:
557
- self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
558
- except:
559
- self.num_downs = 0
560
- if not scale_by_std:
561
- self.scale_factor = scale_factor
562
- else:
563
- self.register_buffer('scale_factor', torch.tensor(scale_factor))
564
- self.instantiate_first_stage(first_stage_config)
565
- self.instantiate_cond_stage(cond_stage_config)
566
- self.cond_stage_forward = cond_stage_forward
567
- self.clip_denoised = False
568
- self.bbox_tokenizer = None
569
-
570
- self.restarted_from_ckpt = False
571
- if ckpt_path is not None:
572
- self.init_from_ckpt(ckpt_path, ignore_keys)
573
- self.restarted_from_ckpt = True
574
- if reset_ema:
575
- assert self.use_ema
576
- print(
577
- f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
578
- self.model_ema = LitEma(self.model)
579
- if reset_num_ema_updates:
580
- print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
581
- assert self.use_ema
582
- self.model_ema.reset_num_updates()
583
-
584
- def make_cond_schedule(self, ):
585
- self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
586
- ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
587
- self.cond_ids[:self.num_timesteps_cond] = ids
588
-
589
- @rank_zero_only
590
- @torch.no_grad()
591
- def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
592
- # only for very first batch
593
- if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
594
- assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
595
- # set rescale weight to 1./std of encodings
596
- print("### USING STD-RESCALING ###")
597
- x = super().get_input(batch, self.first_stage_key)
598
- x = x.to(self.device)
599
- encoder_posterior = self.encode_first_stage(x)
600
- z = self.get_first_stage_encoding(encoder_posterior).detach()
601
- del self.scale_factor
602
- self.register_buffer('scale_factor', 1. / z.flatten().std())
603
- print(f"setting self.scale_factor to {self.scale_factor}")
604
- print("### USING STD-RESCALING ###")
605
-
606
- def register_schedule(self,
607
- given_betas=None, beta_schedule="linear", timesteps=1000,
608
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
609
- super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
610
-
611
- self.shorten_cond_schedule = self.num_timesteps_cond > 1
612
- if self.shorten_cond_schedule:
613
- self.make_cond_schedule()
614
-
615
- def instantiate_first_stage(self, config):
616
- model = instantiate_from_config(config)
617
- self.first_stage_model = model.eval()
618
- self.first_stage_model.train = disabled_train
619
- for param in self.first_stage_model.parameters():
620
- param.requires_grad = False
621
-
622
- def instantiate_cond_stage(self, config):
623
- if not self.cond_stage_trainable:
624
- if config == "__is_first_stage__":
625
- print("Using first stage also as cond stage.")
626
- self.cond_stage_model = self.first_stage_model
627
- elif config == "__is_unconditional__":
628
- print(f"Training {self.__class__.__name__} as an unconditional model.")
629
- self.cond_stage_model = None
630
- # self.be_unconditional = True
631
- else:
632
- model = instantiate_from_config(config)
633
- self.cond_stage_model = model.eval()
634
- self.cond_stage_model.train = disabled_train
635
- for param in self.cond_stage_model.parameters():
636
- param.requires_grad = False
637
- else:
638
- assert config != '__is_first_stage__'
639
- assert config != '__is_unconditional__'
640
- model = instantiate_from_config(config)
641
- self.cond_stage_model = model
642
-
643
- def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
644
- denoise_row = []
645
- for zd in tqdm(samples, desc=desc):
646
- denoise_row.append(self.decode_first_stage(zd.to(self.device),
647
- force_not_quantize=force_no_decoder_quantization))
648
- n_imgs_per_row = len(denoise_row)
649
- denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
650
- denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
651
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
652
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
653
- return denoise_grid
654
-
655
- def get_first_stage_encoding(self, encoder_posterior):
656
- if isinstance(encoder_posterior, DiagonalGaussianDistribution):
657
- z = encoder_posterior.sample()
658
- elif isinstance(encoder_posterior, torch.Tensor):
659
- z = encoder_posterior
660
- else:
661
- raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
662
- return self.scale_factor * z
663
-
664
- def get_learned_conditioning(self, c):
665
- if self.cond_stage_forward is None:
666
- if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
667
- c = self.cond_stage_model.encode(c)
668
- if isinstance(c, DiagonalGaussianDistribution):
669
- c = c.mode()
670
- else:
671
- c = self.cond_stage_model(c)
672
- else:
673
- assert hasattr(self.cond_stage_model, self.cond_stage_forward)
674
- c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
675
- return c
676
-
677
- def meshgrid(self, h, w):
678
- y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
679
- x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
680
-
681
- arr = torch.cat([y, x], dim=-1)
682
- return arr
683
-
684
- def delta_border(self, h, w):
685
- """
686
- :param h: height
687
- :param w: width
688
- :return: normalized distance to image border,
689
- wtith min distance = 0 at border and max dist = 0.5 at image center
690
- """
691
- lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
692
- arr = self.meshgrid(h, w) / lower_right_corner
693
- dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
694
- dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
695
- edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
696
- return edge_dist
697
-
698
- def get_weighting(self, h, w, Ly, Lx, device):
699
- weighting = self.delta_border(h, w)
700
- weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
701
- self.split_input_params["clip_max_weight"], )
702
- weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
703
-
704
- if self.split_input_params["tie_braker"]:
705
- L_weighting = self.delta_border(Ly, Lx)
706
- L_weighting = torch.clip(L_weighting,
707
- self.split_input_params["clip_min_tie_weight"],
708
- self.split_input_params["clip_max_tie_weight"])
709
-
710
- L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
711
- weighting = weighting * L_weighting
712
- return weighting
713
-
714
- def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
715
- """
716
- :param x: img of size (bs, c, h, w)
717
- :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
718
- """
719
- bs, nc, h, w = x.shape
720
-
721
- # number of crops in image
722
- Ly = (h - kernel_size[0]) // stride[0] + 1
723
- Lx = (w - kernel_size[1]) // stride[1] + 1
724
-
725
- if uf == 1 and df == 1:
726
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
727
- unfold = torch.nn.Unfold(**fold_params)
728
-
729
- fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
730
-
731
- weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
732
- normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
733
- weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
734
-
735
- elif uf > 1 and df == 1:
736
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
737
- unfold = torch.nn.Unfold(**fold_params)
738
-
739
- fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
740
- dilation=1, padding=0,
741
- stride=(stride[0] * uf, stride[1] * uf))
742
- fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
743
-
744
- weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
745
- normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
746
- weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
747
-
748
- elif df > 1 and uf == 1:
749
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
750
- unfold = torch.nn.Unfold(**fold_params)
751
-
752
- fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
753
- dilation=1, padding=0,
754
- stride=(stride[0] // df, stride[1] // df))
755
- fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
756
-
757
- weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
758
- normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
759
- weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
760
-
761
- else:
762
- raise NotImplementedError
763
-
764
- return fold, unfold, normalization, weighting
765
-
766
- @torch.no_grad()
767
- def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
768
- cond_key=None, return_original_cond=False, bs=None, return_x=False):
769
- x = super().get_input(batch, k)
770
- if bs is not None:
771
- x = x[:bs]
772
- x = x.to(self.device)
773
- encoder_posterior = self.encode_first_stage(x)
774
- z = self.get_first_stage_encoding(encoder_posterior).detach()
775
-
776
- if self.model.conditioning_key is not None and not self.force_null_conditioning:
777
- if cond_key is None:
778
- cond_key = self.cond_stage_key
779
- if cond_key != self.first_stage_key:
780
- if cond_key in ['caption', 'coordinates_bbox', "txt"]:
781
- xc = batch[cond_key]
782
- elif cond_key in ['class_label', 'cls']:
783
- xc = batch
784
- else:
785
- xc = super().get_input(batch, cond_key).to(self.device)
786
- else:
787
- xc = x
788
- if not self.cond_stage_trainable or force_c_encode:
789
- if isinstance(xc, dict) or isinstance(xc, list):
790
- c = self.get_learned_conditioning(xc)
791
- else:
792
- c = self.get_learned_conditioning(xc.to(self.device))
793
- else:
794
- c = xc
795
- if bs is not None:
796
- c = c[:bs]
797
-
798
- if self.use_positional_encodings:
799
- pos_x, pos_y = self.compute_latent_shifts(batch)
800
- ckey = __conditioning_keys__[self.model.conditioning_key]
801
- c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
802
-
803
- else:
804
- c = None
805
- xc = None
806
- if self.use_positional_encodings:
807
- pos_x, pos_y = self.compute_latent_shifts(batch)
808
- c = {'pos_x': pos_x, 'pos_y': pos_y}
809
- out = [z, c]
810
- if return_first_stage_outputs:
811
- xrec = self.decode_first_stage(z)
812
- out.extend([x, xrec])
813
- if return_x:
814
- out.extend([x])
815
- if return_original_cond:
816
- out.append(xc)
817
- return out
818
-
819
- @torch.no_grad()
820
- def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
821
- if predict_cids:
822
- if z.dim() == 4:
823
- z = torch.argmax(z.exp(), dim=1).long()
824
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
825
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
826
-
827
- z = 1. / self.scale_factor * z
828
- return self.first_stage_model.decode(z)
829
-
830
- @torch.no_grad()
831
- def encode_first_stage(self, x):
832
- return self.first_stage_model.encode(x)
833
-
834
- def shared_step(self, batch, **kwargs):
835
- x, c = self.get_input(batch, self.first_stage_key)
836
- loss = self(x, c)
837
- return loss
838
-
839
- def forward(self, x, c, *args, **kwargs):
840
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
841
- if self.model.conditioning_key is not None:
842
- assert c is not None
843
- if self.cond_stage_trainable:
844
- c = self.get_learned_conditioning(c)
845
- if self.shorten_cond_schedule: # TODO: drop this option
846
- tc = self.cond_ids[t].to(self.device)
847
- c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
848
- return self.p_losses(x, c, t, *args, **kwargs)
849
-
850
- def apply_model(self, x_noisy, t, cond, return_ids=False):
851
- if isinstance(cond, dict):
852
- # hybrid case, cond is expected to be a dict
853
- pass
854
- else:
855
- if not isinstance(cond, list):
856
- cond = [cond]
857
- key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
858
- cond = {key: cond}
859
-
860
- x_recon = self.model(x_noisy, t, **cond)
861
-
862
- if isinstance(x_recon, tuple) and not return_ids:
863
- return x_recon[0]
864
- else:
865
- return x_recon
866
-
867
- def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
868
- return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
869
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
870
-
871
- def _prior_bpd(self, x_start):
872
- """
873
- Get the prior KL term for the variational lower-bound, measured in
874
- bits-per-dim.
875
- This term can't be optimized, as it only depends on the encoder.
876
- :param x_start: the [N x C x ...] tensor of inputs.
877
- :return: a batch of [N] KL values (in bits), one per batch element.
878
- """
879
- batch_size = x_start.shape[0]
880
- t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
881
- qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
882
- kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
883
- return mean_flat(kl_prior) / np.log(2.0)
884
-
885
- def p_losses(self, x_start, cond, t, noise=None):
886
- noise = default(noise, lambda: torch.randn_like(x_start))
887
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
888
- model_output = self.apply_model(x_noisy, t, cond)
889
-
890
- loss_dict = {}
891
- prefix = 'train' if self.training else 'val'
892
-
893
- if self.parameterization == "x0":
894
- target = x_start
895
- elif self.parameterization == "eps":
896
- target = noise
897
- elif self.parameterization == "v":
898
- target = self.get_v(x_start, noise, t)
899
- else:
900
- raise NotImplementedError()
901
-
902
- loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
903
- loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
904
-
905
- logvar_t = self.logvar[t].to(self.device)
906
- loss = loss_simple / torch.exp(logvar_t) + logvar_t
907
- # loss = loss_simple / torch.exp(self.logvar) + self.logvar
908
- if self.learn_logvar:
909
- loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
910
- loss_dict.update({'logvar': self.logvar.data.mean()})
911
-
912
- loss = self.l_simple_weight * loss.mean()
913
-
914
- loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
915
- loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
916
- loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
917
- loss += (self.original_elbo_weight * loss_vlb)
918
- loss_dict.update({f'{prefix}/loss': loss})
919
-
920
- return loss, loss_dict
921
-
922
- def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
923
- return_x0=False, score_corrector=None, corrector_kwargs=None):
924
- t_in = t
925
- model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
926
-
927
- if score_corrector is not None:
928
- assert self.parameterization == "eps"
929
- model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
930
-
931
- if return_codebook_ids:
932
- model_out, logits = model_out
933
-
934
- if self.parameterization == "eps":
935
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
936
- elif self.parameterization == "x0":
937
- x_recon = model_out
938
- else:
939
- raise NotImplementedError()
940
-
941
- if clip_denoised:
942
- x_recon.clamp_(-1., 1.)
943
- if quantize_denoised:
944
- x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
945
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
946
- if return_codebook_ids:
947
- return model_mean, posterior_variance, posterior_log_variance, logits
948
- elif return_x0:
949
- return model_mean, posterior_variance, posterior_log_variance, x_recon
950
- else:
951
- return model_mean, posterior_variance, posterior_log_variance
952
-
953
- @torch.no_grad()
954
- def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
955
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
956
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
957
- b, *_, device = *x.shape, x.device
958
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
959
- return_codebook_ids=return_codebook_ids,
960
- quantize_denoised=quantize_denoised,
961
- return_x0=return_x0,
962
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
963
- if return_codebook_ids:
964
- raise DeprecationWarning("Support dropped.")
965
- model_mean, _, model_log_variance, logits = outputs
966
- elif return_x0:
967
- model_mean, _, model_log_variance, x0 = outputs
968
- else:
969
- model_mean, _, model_log_variance = outputs
970
-
971
- noise = noise_like(x.shape, device, repeat_noise) * temperature
972
- if noise_dropout > 0.:
973
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
974
- # no noise when t == 0
975
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
976
-
977
- if return_codebook_ids:
978
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
979
- if return_x0:
980
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
981
- else:
982
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
983
-
984
- @torch.no_grad()
985
- def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
986
- img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
987
- score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
988
- log_every_t=None):
989
- if not log_every_t:
990
- log_every_t = self.log_every_t
991
- timesteps = self.num_timesteps
992
- if batch_size is not None:
993
- b = batch_size if batch_size is not None else shape[0]
994
- shape = [batch_size] + list(shape)
995
- else:
996
- b = batch_size = shape[0]
997
- if x_T is None:
998
- img = torch.randn(shape, device=self.device)
999
- else:
1000
- img = x_T
1001
- intermediates = []
1002
- if cond is not None:
1003
- if isinstance(cond, dict):
1004
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1005
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1006
- else:
1007
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1008
-
1009
- if start_T is not None:
1010
- timesteps = min(timesteps, start_T)
1011
- iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1012
- total=timesteps) if verbose else reversed(
1013
- range(0, timesteps))
1014
- if type(temperature) == float:
1015
- temperature = [temperature] * timesteps
1016
-
1017
- for i in iterator:
1018
- ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1019
- if self.shorten_cond_schedule:
1020
- assert self.model.conditioning_key != 'hybrid'
1021
- tc = self.cond_ids[ts].to(cond.device)
1022
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1023
-
1024
- img, x0_partial = self.p_sample(img, cond, ts,
1025
- clip_denoised=self.clip_denoised,
1026
- quantize_denoised=quantize_denoised, return_x0=True,
1027
- temperature=temperature[i], noise_dropout=noise_dropout,
1028
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1029
- if mask is not None:
1030
- assert x0 is not None
1031
- img_orig = self.q_sample(x0, ts)
1032
- img = img_orig * mask + (1. - mask) * img
1033
-
1034
- if i % log_every_t == 0 or i == timesteps - 1:
1035
- intermediates.append(x0_partial)
1036
- if callback: callback(i)
1037
- if img_callback: img_callback(img, i)
1038
- return img, intermediates
1039
-
1040
- @torch.no_grad()
1041
- def p_sample_loop(self, cond, shape, return_intermediates=False,
1042
- x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1043
- mask=None, x0=None, img_callback=None, start_T=None,
1044
- log_every_t=None):
1045
-
1046
- if not log_every_t:
1047
- log_every_t = self.log_every_t
1048
- device = self.betas.device
1049
- b = shape[0]
1050
- if x_T is None:
1051
- img = torch.randn(shape, device=device)
1052
- else:
1053
- img = x_T
1054
-
1055
- intermediates = [img]
1056
- if timesteps is None:
1057
- timesteps = self.num_timesteps
1058
-
1059
- if start_T is not None:
1060
- timesteps = min(timesteps, start_T)
1061
- iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1062
- range(0, timesteps))
1063
-
1064
- if mask is not None:
1065
- assert x0 is not None
1066
- assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1067
-
1068
- for i in iterator:
1069
- ts = torch.full((b,), i, device=device, dtype=torch.long)
1070
- if self.shorten_cond_schedule:
1071
- assert self.model.conditioning_key != 'hybrid'
1072
- tc = self.cond_ids[ts].to(cond.device)
1073
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1074
-
1075
- img = self.p_sample(img, cond, ts,
1076
- clip_denoised=self.clip_denoised,
1077
- quantize_denoised=quantize_denoised)
1078
- if mask is not None:
1079
- img_orig = self.q_sample(x0, ts)
1080
- img = img_orig * mask + (1. - mask) * img
1081
-
1082
- if i % log_every_t == 0 or i == timesteps - 1:
1083
- intermediates.append(img)
1084
- if callback: callback(i)
1085
- if img_callback: img_callback(img, i)
1086
-
1087
- if return_intermediates:
1088
- return img, intermediates
1089
- return img
1090
-
1091
- @torch.no_grad()
1092
- def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1093
- verbose=True, timesteps=None, quantize_denoised=False,
1094
- mask=None, x0=None, shape=None, **kwargs):
1095
- if shape is None:
1096
- shape = (batch_size, self.channels, self.image_size, self.image_size)
1097
- if cond is not None:
1098
- if isinstance(cond, dict):
1099
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1100
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1101
- else:
1102
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1103
- return self.p_sample_loop(cond,
1104
- shape,
1105
- return_intermediates=return_intermediates, x_T=x_T,
1106
- verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1107
- mask=mask, x0=x0)
1108
-
1109
- @torch.no_grad()
1110
- def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1111
- if ddim:
1112
- ddim_sampler = DDIMSampler(self)
1113
- shape = (self.channels, self.image_size, self.image_size)
1114
- samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1115
- shape, cond, verbose=False, **kwargs)
1116
-
1117
- else:
1118
- samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1119
- return_intermediates=True, **kwargs)
1120
-
1121
- return samples, intermediates
1122
-
1123
- @torch.no_grad()
1124
- def get_unconditional_conditioning(self, batch_size, null_label=None):
1125
- if null_label is not None:
1126
- xc = null_label
1127
- if isinstance(xc, ListConfig):
1128
- xc = list(xc)
1129
- if isinstance(xc, dict) or isinstance(xc, list):
1130
- c = self.get_learned_conditioning(xc)
1131
- else:
1132
- if hasattr(xc, "to"):
1133
- xc = xc.to(self.device)
1134
- c = self.get_learned_conditioning(xc)
1135
- else:
1136
- if self.cond_stage_key in ["class_label", "cls"]:
1137
- xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1138
- return self.get_learned_conditioning(xc)
1139
- else:
1140
- raise NotImplementedError("todo")
1141
- if isinstance(c, list): # in case the encoder gives us a list
1142
- for i in range(len(c)):
1143
- c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1144
- else:
1145
- c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1146
- return c
1147
-
1148
- @torch.no_grad()
1149
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1150
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1151
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1152
- use_ema_scope=True,
1153
- **kwargs):
1154
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1155
- use_ddim = ddim_steps is not None
1156
-
1157
- log = dict()
1158
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1159
- return_first_stage_outputs=True,
1160
- force_c_encode=True,
1161
- return_original_cond=True,
1162
- bs=N)
1163
- N = min(x.shape[0], N)
1164
- n_row = min(x.shape[0], n_row)
1165
- log["inputs"] = x
1166
- log["reconstruction"] = xrec
1167
- if self.model.conditioning_key is not None:
1168
- if hasattr(self.cond_stage_model, "decode"):
1169
- xc = self.cond_stage_model.decode(c)
1170
- log["conditioning"] = xc
1171
- elif self.cond_stage_key in ["caption", "txt"]:
1172
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1173
- log["conditioning"] = xc
1174
- elif self.cond_stage_key in ['class_label', "cls"]:
1175
- try:
1176
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1177
- log['conditioning'] = xc
1178
- except KeyError:
1179
- # probably no "human_label" in batch
1180
- pass
1181
- elif isimage(xc):
1182
- log["conditioning"] = xc
1183
- if ismap(xc):
1184
- log["original_conditioning"] = self.to_rgb(xc)
1185
-
1186
- if plot_diffusion_rows:
1187
- # get diffusion row
1188
- diffusion_row = list()
1189
- z_start = z[:n_row]
1190
- for t in range(self.num_timesteps):
1191
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1192
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1193
- t = t.to(self.device).long()
1194
- noise = torch.randn_like(z_start)
1195
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1196
- diffusion_row.append(self.decode_first_stage(z_noisy))
1197
-
1198
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1199
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1200
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1201
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1202
- log["diffusion_row"] = diffusion_grid
1203
-
1204
- if sample:
1205
- # get denoise row
1206
- with ema_scope("Sampling"):
1207
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1208
- ddim_steps=ddim_steps, eta=ddim_eta)
1209
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1210
- x_samples = self.decode_first_stage(samples)
1211
- log["samples"] = x_samples
1212
- if plot_denoise_rows:
1213
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1214
- log["denoise_row"] = denoise_grid
1215
-
1216
- if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1217
- self.first_stage_model, IdentityFirstStage):
1218
- # also display when quantizing x0 while sampling
1219
- with ema_scope("Plotting Quantized Denoised"):
1220
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1221
- ddim_steps=ddim_steps, eta=ddim_eta,
1222
- quantize_denoised=True)
1223
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1224
- # quantize_denoised=True)
1225
- x_samples = self.decode_first_stage(samples.to(self.device))
1226
- log["samples_x0_quantized"] = x_samples
1227
-
1228
- if unconditional_guidance_scale > 1.0:
1229
- uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1230
- if self.model.conditioning_key == "crossattn-adm":
1231
- uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1232
- with ema_scope("Sampling with classifier-free guidance"):
1233
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1234
- ddim_steps=ddim_steps, eta=ddim_eta,
1235
- unconditional_guidance_scale=unconditional_guidance_scale,
1236
- unconditional_conditioning=uc,
1237
- )
1238
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1239
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1240
-
1241
- if inpaint:
1242
- # make a simple center square
1243
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
1244
- mask = torch.ones(N, h, w).to(self.device)
1245
- # zeros will be filled in
1246
- mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1247
- mask = mask[:, None, ...]
1248
- with ema_scope("Plotting Inpaint"):
1249
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1250
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1251
- x_samples = self.decode_first_stage(samples.to(self.device))
1252
- log["samples_inpainting"] = x_samples
1253
- log["mask"] = mask
1254
-
1255
- # outpaint
1256
- mask = 1. - mask
1257
- with ema_scope("Plotting Outpaint"):
1258
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1259
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1260
- x_samples = self.decode_first_stage(samples.to(self.device))
1261
- log["samples_outpainting"] = x_samples
1262
-
1263
- if plot_progressive_rows:
1264
- with ema_scope("Plotting Progressives"):
1265
- img, progressives = self.progressive_denoising(c,
1266
- shape=(self.channels, self.image_size, self.image_size),
1267
- batch_size=N)
1268
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1269
- log["progressive_row"] = prog_row
1270
-
1271
- if return_keys:
1272
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1273
- return log
1274
- else:
1275
- return {key: log[key] for key in return_keys}
1276
- return log
1277
-
1278
- def configure_optimizers(self):
1279
- lr = self.learning_rate
1280
- params = list(self.model.parameters())
1281
- if self.cond_stage_trainable:
1282
- print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1283
- params = params + list(self.cond_stage_model.parameters())
1284
- if self.learn_logvar:
1285
- print('Diffusion model optimizing logvar')
1286
- params.append(self.logvar)
1287
- opt = torch.optim.AdamW(params, lr=lr)
1288
- if self.use_scheduler:
1289
- assert 'target' in self.scheduler_config
1290
- scheduler = instantiate_from_config(self.scheduler_config)
1291
-
1292
- print("Setting up LambdaLR scheduler...")
1293
- scheduler = [
1294
- {
1295
- 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1296
- 'interval': 'step',
1297
- 'frequency': 1
1298
- }]
1299
- return [opt], scheduler
1300
- return opt
1301
-
1302
- @torch.no_grad()
1303
- def to_rgb(self, x):
1304
- x = x.float()
1305
- if not hasattr(self, "colorize"):
1306
- self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1307
- x = nn.functional.conv2d(x, weight=self.colorize)
1308
- x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1309
- return x
1310
-
1311
-
1312
- class DiffusionWrapper(pl.LightningModule):
1313
- def __init__(self, diff_model_config, conditioning_key):
1314
- super().__init__()
1315
- self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1316
- self.diffusion_model = instantiate_from_config(diff_model_config)
1317
- self.conditioning_key = conditioning_key
1318
- assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1319
-
1320
- def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1321
- if self.conditioning_key is None:
1322
- out = self.diffusion_model(x, t)
1323
- elif self.conditioning_key == 'concat':
1324
- xc = torch.cat([x] + c_concat, dim=1)
1325
- out = self.diffusion_model(xc, t)
1326
- elif self.conditioning_key == 'crossattn':
1327
- if not self.sequential_cross_attn:
1328
- cc = torch.cat(c_crossattn, 1)
1329
- else:
1330
- cc = c_crossattn
1331
- out = self.diffusion_model(x, t, context=cc)
1332
- elif self.conditioning_key == 'hybrid':
1333
- xc = torch.cat([x] + c_concat, dim=1)
1334
- cc = torch.cat(c_crossattn, 1)
1335
- out = self.diffusion_model(xc, t, context=cc)
1336
- elif self.conditioning_key == 'hybrid-adm':
1337
- assert c_adm is not None
1338
- xc = torch.cat([x] + c_concat, dim=1)
1339
- cc = torch.cat(c_crossattn, 1)
1340
- out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1341
- elif self.conditioning_key == 'crossattn-adm':
1342
- assert c_adm is not None
1343
- cc = torch.cat(c_crossattn, 1)
1344
- out = self.diffusion_model(x, t, context=cc, y=c_adm)
1345
- elif self.conditioning_key == 'adm':
1346
- cc = c_crossattn[0]
1347
- out = self.diffusion_model(x, t, y=cc)
1348
- else:
1349
- raise NotImplementedError()
1350
-
1351
- return out
1352
-
1353
-
1354
- class LatentUpscaleDiffusion(LatentDiffusion):
1355
- def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1356
- super().__init__(*args, **kwargs)
1357
- # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1358
- assert not self.cond_stage_trainable
1359
- self.instantiate_low_stage(low_scale_config)
1360
- self.low_scale_key = low_scale_key
1361
- self.noise_level_key = noise_level_key
1362
-
1363
- def instantiate_low_stage(self, config):
1364
- model = instantiate_from_config(config)
1365
- self.low_scale_model = model.eval()
1366
- self.low_scale_model.train = disabled_train
1367
- for param in self.low_scale_model.parameters():
1368
- param.requires_grad = False
1369
-
1370
- @torch.no_grad()
1371
- def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1372
- if not log_mode:
1373
- z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1374
- else:
1375
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1376
- force_c_encode=True, return_original_cond=True, bs=bs)
1377
- x_low = batch[self.low_scale_key][:bs]
1378
- x_low = rearrange(x_low, 'b h w c -> b c h w')
1379
- x_low = x_low.to(memory_format=torch.contiguous_format).float()
1380
- zx, noise_level = self.low_scale_model(x_low)
1381
- if self.noise_level_key is not None:
1382
- # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1383
- raise NotImplementedError('TODO')
1384
-
1385
- all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1386
- if log_mode:
1387
- # TODO: maybe disable if too expensive
1388
- x_low_rec = self.low_scale_model.decode(zx)
1389
- return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1390
- return z, all_conds
1391
-
1392
- @torch.no_grad()
1393
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1394
- plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1395
- unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1396
- **kwargs):
1397
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1398
- use_ddim = ddim_steps is not None
1399
-
1400
- log = dict()
1401
- z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1402
- log_mode=True)
1403
- N = min(x.shape[0], N)
1404
- n_row = min(x.shape[0], n_row)
1405
- log["inputs"] = x
1406
- log["reconstruction"] = xrec
1407
- log["x_lr"] = x_low
1408
- log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1409
- if self.model.conditioning_key is not None:
1410
- if hasattr(self.cond_stage_model, "decode"):
1411
- xc = self.cond_stage_model.decode(c)
1412
- log["conditioning"] = xc
1413
- elif self.cond_stage_key in ["caption", "txt"]:
1414
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1415
- log["conditioning"] = xc
1416
- elif self.cond_stage_key in ['class_label', 'cls']:
1417
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1418
- log['conditioning'] = xc
1419
- elif isimage(xc):
1420
- log["conditioning"] = xc
1421
- if ismap(xc):
1422
- log["original_conditioning"] = self.to_rgb(xc)
1423
-
1424
- if plot_diffusion_rows:
1425
- # get diffusion row
1426
- diffusion_row = list()
1427
- z_start = z[:n_row]
1428
- for t in range(self.num_timesteps):
1429
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1430
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1431
- t = t.to(self.device).long()
1432
- noise = torch.randn_like(z_start)
1433
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1434
- diffusion_row.append(self.decode_first_stage(z_noisy))
1435
-
1436
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1437
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1438
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1439
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1440
- log["diffusion_row"] = diffusion_grid
1441
-
1442
- if sample:
1443
- # get denoise row
1444
- with ema_scope("Sampling"):
1445
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1446
- ddim_steps=ddim_steps, eta=ddim_eta)
1447
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1448
- x_samples = self.decode_first_stage(samples)
1449
- log["samples"] = x_samples
1450
- if plot_denoise_rows:
1451
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1452
- log["denoise_row"] = denoise_grid
1453
-
1454
- if unconditional_guidance_scale > 1.0:
1455
- uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1456
- # TODO explore better "unconditional" choices for the other keys
1457
- # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1458
- uc = dict()
1459
- for k in c:
1460
- if k == "c_crossattn":
1461
- assert isinstance(c[k], list) and len(c[k]) == 1
1462
- uc[k] = [uc_tmp]
1463
- elif k == "c_adm": # todo: only run with text-based guidance?
1464
- assert isinstance(c[k], torch.Tensor)
1465
- #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1466
- uc[k] = c[k]
1467
- elif isinstance(c[k], list):
1468
- uc[k] = [c[k][i] for i in range(len(c[k]))]
1469
- else:
1470
- uc[k] = c[k]
1471
-
1472
- with ema_scope("Sampling with classifier-free guidance"):
1473
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1474
- ddim_steps=ddim_steps, eta=ddim_eta,
1475
- unconditional_guidance_scale=unconditional_guidance_scale,
1476
- unconditional_conditioning=uc,
1477
- )
1478
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1479
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1480
-
1481
- if plot_progressive_rows:
1482
- with ema_scope("Plotting Progressives"):
1483
- img, progressives = self.progressive_denoising(c,
1484
- shape=(self.channels, self.image_size, self.image_size),
1485
- batch_size=N)
1486
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1487
- log["progressive_row"] = prog_row
1488
-
1489
- return log
1490
-
1491
-
1492
- class LatentFinetuneDiffusion(LatentDiffusion):
1493
- """
1494
- Basis for different finetunas, such as inpainting or depth2image
1495
- To disable finetuning mode, set finetune_keys to None
1496
- """
1497
-
1498
- def __init__(self,
1499
- concat_keys: tuple,
1500
- finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1501
- "model_ema.diffusion_modelinput_blocks00weight"
1502
- ),
1503
- keep_finetune_dims=4,
1504
- # if model was trained without concat mode before and we would like to keep these channels
1505
- c_concat_log_start=None, # to log reconstruction of c_concat codes
1506
- c_concat_log_end=None,
1507
- *args, **kwargs
1508
- ):
1509
- ckpt_path = kwargs.pop("ckpt_path", None)
1510
- ignore_keys = kwargs.pop("ignore_keys", list())
1511
- super().__init__(*args, **kwargs)
1512
- self.finetune_keys = finetune_keys
1513
- self.concat_keys = concat_keys
1514
- self.keep_dims = keep_finetune_dims
1515
- self.c_concat_log_start = c_concat_log_start
1516
- self.c_concat_log_end = c_concat_log_end
1517
- if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1518
- if exists(ckpt_path):
1519
- self.init_from_ckpt(ckpt_path, ignore_keys)
1520
-
1521
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1522
- sd = torch.load(path, map_location="cpu")
1523
- if "state_dict" in list(sd.keys()):
1524
- sd = sd["state_dict"]
1525
- keys = list(sd.keys())
1526
- for k in keys:
1527
- for ik in ignore_keys:
1528
- if k.startswith(ik):
1529
- print("Deleting key {} from state_dict.".format(k))
1530
- del sd[k]
1531
-
1532
- # make it explicit, finetune by including extra input channels
1533
- if exists(self.finetune_keys) and k in self.finetune_keys:
1534
- new_entry = None
1535
- for name, param in self.named_parameters():
1536
- if name in self.finetune_keys:
1537
- print(
1538
- f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1539
- new_entry = torch.zeros_like(param) # zero init
1540
- assert exists(new_entry), 'did not find matching parameter to modify'
1541
- new_entry[:, :self.keep_dims, ...] = sd[k]
1542
- sd[k] = new_entry
1543
-
1544
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1545
- sd, strict=False)
1546
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1547
- if len(missing) > 0:
1548
- print(f"Missing Keys: {missing}")
1549
- if len(unexpected) > 0:
1550
- print(f"Unexpected Keys: {unexpected}")
1551
-
1552
- @torch.no_grad()
1553
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1554
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1555
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1556
- use_ema_scope=True,
1557
- **kwargs):
1558
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1559
- use_ddim = ddim_steps is not None
1560
-
1561
- log = dict()
1562
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1563
- c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1564
- N = min(x.shape[0], N)
1565
- n_row = min(x.shape[0], n_row)
1566
- log["inputs"] = x
1567
- log["reconstruction"] = xrec
1568
- if self.model.conditioning_key is not None:
1569
- if hasattr(self.cond_stage_model, "decode"):
1570
- xc = self.cond_stage_model.decode(c)
1571
- log["conditioning"] = xc
1572
- elif self.cond_stage_key in ["caption", "txt"]:
1573
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1574
- log["conditioning"] = xc
1575
- elif self.cond_stage_key in ['class_label', 'cls']:
1576
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1577
- log['conditioning'] = xc
1578
- elif isimage(xc):
1579
- log["conditioning"] = xc
1580
- if ismap(xc):
1581
- log["original_conditioning"] = self.to_rgb(xc)
1582
-
1583
- if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1584
- log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1585
-
1586
- if plot_diffusion_rows:
1587
- # get diffusion row
1588
- diffusion_row = list()
1589
- z_start = z[:n_row]
1590
- for t in range(self.num_timesteps):
1591
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1592
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1593
- t = t.to(self.device).long()
1594
- noise = torch.randn_like(z_start)
1595
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1596
- diffusion_row.append(self.decode_first_stage(z_noisy))
1597
-
1598
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1599
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1600
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1601
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1602
- log["diffusion_row"] = diffusion_grid
1603
-
1604
- if sample:
1605
- # get denoise row
1606
- with ema_scope("Sampling"):
1607
- samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1608
- batch_size=N, ddim=use_ddim,
1609
- ddim_steps=ddim_steps, eta=ddim_eta)
1610
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1611
- x_samples = self.decode_first_stage(samples)
1612
- log["samples"] = x_samples
1613
- if plot_denoise_rows:
1614
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1615
- log["denoise_row"] = denoise_grid
1616
-
1617
- if unconditional_guidance_scale > 1.0:
1618
- uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1619
- uc_cat = c_cat
1620
- uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1621
- with ema_scope("Sampling with classifier-free guidance"):
1622
- samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1623
- batch_size=N, ddim=use_ddim,
1624
- ddim_steps=ddim_steps, eta=ddim_eta,
1625
- unconditional_guidance_scale=unconditional_guidance_scale,
1626
- unconditional_conditioning=uc_full,
1627
- )
1628
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1629
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1630
-
1631
- return log
1632
-
1633
-
1634
- class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1635
- """
1636
- can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1637
- e.g. mask as concat and text via cross-attn.
1638
- To disable finetuning mode, set finetune_keys to None
1639
- """
1640
-
1641
- def __init__(self,
1642
- concat_keys=("mask", "masked_image"),
1643
- masked_image_key="masked_image",
1644
- *args, **kwargs
1645
- ):
1646
- super().__init__(concat_keys, *args, **kwargs)
1647
- self.masked_image_key = masked_image_key
1648
- assert self.masked_image_key in concat_keys
1649
-
1650
- @torch.no_grad()
1651
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1652
- # note: restricted to non-trainable encoders currently
1653
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1654
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1655
- force_c_encode=True, return_original_cond=True, bs=bs)
1656
-
1657
- assert exists(self.concat_keys)
1658
- c_cat = list()
1659
- for ck in self.concat_keys:
1660
- cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1661
- if bs is not None:
1662
- cc = cc[:bs]
1663
- cc = cc.to(self.device)
1664
- bchw = z.shape
1665
- if ck != self.masked_image_key:
1666
- cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1667
- else:
1668
- cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1669
- c_cat.append(cc)
1670
- c_cat = torch.cat(c_cat, dim=1)
1671
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1672
- if return_first_stage_outputs:
1673
- return z, all_conds, x, xrec, xc
1674
- return z, all_conds
1675
-
1676
- @torch.no_grad()
1677
- def log_images(self, *args, **kwargs):
1678
- log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1679
- log["masked_image"] = rearrange(args[0]["masked_image"],
1680
- 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1681
- return log
1682
-
1683
-
1684
- class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1685
- """
1686
- condition on monocular depth estimation
1687
- """
1688
-
1689
- def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1690
- super().__init__(concat_keys=concat_keys, *args, **kwargs)
1691
- self.depth_model = instantiate_from_config(depth_stage_config)
1692
- self.depth_stage_key = concat_keys[0]
1693
-
1694
- @torch.no_grad()
1695
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1696
- # note: restricted to non-trainable encoders currently
1697
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1698
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1699
- force_c_encode=True, return_original_cond=True, bs=bs)
1700
-
1701
- assert exists(self.concat_keys)
1702
- assert len(self.concat_keys) == 1
1703
- c_cat = list()
1704
- for ck in self.concat_keys:
1705
- cc = batch[ck]
1706
- if bs is not None:
1707
- cc = cc[:bs]
1708
- cc = cc.to(self.device)
1709
- cc = self.depth_model(cc)
1710
- cc = torch.nn.functional.interpolate(
1711
- cc,
1712
- size=z.shape[2:],
1713
- mode="bicubic",
1714
- align_corners=False,
1715
- )
1716
-
1717
- depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1718
- keepdim=True)
1719
- cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1720
- c_cat.append(cc)
1721
- c_cat = torch.cat(c_cat, dim=1)
1722
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1723
- if return_first_stage_outputs:
1724
- return z, all_conds, x, xrec, xc
1725
- return z, all_conds
1726
-
1727
- @torch.no_grad()
1728
- def log_images(self, *args, **kwargs):
1729
- log = super().log_images(*args, **kwargs)
1730
- depth = self.depth_model(args[0][self.depth_stage_key])
1731
- depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1732
- torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1733
- log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1734
- return log
1735
-
1736
-
1737
- class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1738
- """
1739
- condition on low-res image (and optionally on some spatial noise augmentation)
1740
- """
1741
- def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1742
- low_scale_config=None, low_scale_key=None, *args, **kwargs):
1743
- super().__init__(concat_keys=concat_keys, *args, **kwargs)
1744
- self.reshuffle_patch_size = reshuffle_patch_size
1745
- self.low_scale_model = None
1746
- if low_scale_config is not None:
1747
- print("Initializing a low-scale model")
1748
- assert exists(low_scale_key)
1749
- self.instantiate_low_stage(low_scale_config)
1750
- self.low_scale_key = low_scale_key
1751
-
1752
- def instantiate_low_stage(self, config):
1753
- model = instantiate_from_config(config)
1754
- self.low_scale_model = model.eval()
1755
- self.low_scale_model.train = disabled_train
1756
- for param in self.low_scale_model.parameters():
1757
- param.requires_grad = False
1758
-
1759
- @torch.no_grad()
1760
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1761
- # note: restricted to non-trainable encoders currently
1762
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1763
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1764
- force_c_encode=True, return_original_cond=True, bs=bs)
1765
-
1766
- assert exists(self.concat_keys)
1767
- assert len(self.concat_keys) == 1
1768
- # optionally make spatial noise_level here
1769
- c_cat = list()
1770
- noise_level = None
1771
- for ck in self.concat_keys:
1772
- cc = batch[ck]
1773
- cc = rearrange(cc, 'b h w c -> b c h w')
1774
- if exists(self.reshuffle_patch_size):
1775
- assert isinstance(self.reshuffle_patch_size, int)
1776
- cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1777
- p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1778
- if bs is not None:
1779
- cc = cc[:bs]
1780
- cc = cc.to(self.device)
1781
- if exists(self.low_scale_model) and ck == self.low_scale_key:
1782
- cc, noise_level = self.low_scale_model(cc)
1783
- c_cat.append(cc)
1784
- c_cat = torch.cat(c_cat, dim=1)
1785
- if exists(noise_level):
1786
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1787
- else:
1788
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1789
- if return_first_stage_outputs:
1790
- return z, all_conds, x, xrec, xc
1791
- return z, all_conds
1792
-
1793
- @torch.no_grad()
1794
- def log_images(self, *args, **kwargs):
1795
- log = super().log_images(*args, **kwargs)
1796
- log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1797
- return log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/dpm_solver/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .sampler import DPMSolverSampler
 
 
ldm/models/diffusion/dpm_solver/dpm_solver.py DELETED
@@ -1,1154 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- import math
4
- from tqdm import tqdm
5
-
6
-
7
- class NoiseScheduleVP:
8
- def __init__(
9
- self,
10
- schedule='discrete',
11
- betas=None,
12
- alphas_cumprod=None,
13
- continuous_beta_0=0.1,
14
- continuous_beta_1=20.,
15
- ):
16
- """Create a wrapper class for the forward SDE (VP type).
17
- ***
18
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
- ***
21
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
22
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
23
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
24
- log_alpha_t = self.marginal_log_mean_coeff(t)
25
- sigma_t = self.marginal_std(t)
26
- lambda_t = self.marginal_lambda(t)
27
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
28
- t = self.inverse_lambda(lambda_t)
29
- ===============================================================
30
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
31
- 1. For discrete-time DPMs:
32
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
33
- t_i = (i + 1) / N
34
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
35
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
36
- Args:
37
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
38
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
39
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
40
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
41
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
42
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
43
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
44
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
45
- and
46
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
47
- 2. For continuous-time DPMs:
48
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
49
- schedule are the default settings in DDPM and improved-DDPM:
50
- Args:
51
- beta_min: A `float` number. The smallest beta for the linear schedule.
52
- beta_max: A `float` number. The largest beta for the linear schedule.
53
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
54
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
55
- T: A `float` number. The ending time of the forward process.
56
- ===============================================================
57
- Args:
58
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
59
- 'linear' or 'cosine' for continuous-time DPMs.
60
- Returns:
61
- A wrapper object of the forward SDE (VP type).
62
-
63
- ===============================================================
64
- Example:
65
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
66
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
67
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
68
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
69
- # For continuous-time DPMs (VPSDE), linear schedule:
70
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
71
- """
72
-
73
- if schedule not in ['discrete', 'linear', 'cosine']:
74
- raise ValueError(
75
- "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
76
- schedule))
77
-
78
- self.schedule = schedule
79
- if schedule == 'discrete':
80
- if betas is not None:
81
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
82
- else:
83
- assert alphas_cumprod is not None
84
- log_alphas = 0.5 * torch.log(alphas_cumprod)
85
- self.total_N = len(log_alphas)
86
- self.T = 1.
87
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
88
- self.log_alpha_array = log_alphas.reshape((1, -1,))
89
- else:
90
- self.total_N = 1000
91
- self.beta_0 = continuous_beta_0
92
- self.beta_1 = continuous_beta_1
93
- self.cosine_s = 0.008
94
- self.cosine_beta_max = 999.
95
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
96
- 1. + self.cosine_s) / math.pi - self.cosine_s
97
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
98
- self.schedule = schedule
99
- if schedule == 'cosine':
100
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
101
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
102
- self.T = 0.9946
103
- else:
104
- self.T = 1.
105
-
106
- def marginal_log_mean_coeff(self, t):
107
- """
108
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
109
- """
110
- if self.schedule == 'discrete':
111
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
112
- self.log_alpha_array.to(t.device)).reshape((-1))
113
- elif self.schedule == 'linear':
114
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
115
- elif self.schedule == 'cosine':
116
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
117
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
118
- return log_alpha_t
119
-
120
- def marginal_alpha(self, t):
121
- """
122
- Compute alpha_t of a given continuous-time label t in [0, T].
123
- """
124
- return torch.exp(self.marginal_log_mean_coeff(t))
125
-
126
- def marginal_std(self, t):
127
- """
128
- Compute sigma_t of a given continuous-time label t in [0, T].
129
- """
130
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
131
-
132
- def marginal_lambda(self, t):
133
- """
134
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
135
- """
136
- log_mean_coeff = self.marginal_log_mean_coeff(t)
137
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
138
- return log_mean_coeff - log_std
139
-
140
- def inverse_lambda(self, lamb):
141
- """
142
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
143
- """
144
- if self.schedule == 'linear':
145
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
146
- Delta = self.beta_0 ** 2 + tmp
147
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
148
- elif self.schedule == 'discrete':
149
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
150
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
151
- torch.flip(self.t_array.to(lamb.device), [1]))
152
- return t.reshape((-1,))
153
- else:
154
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
155
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
156
- 1. + self.cosine_s) / math.pi - self.cosine_s
157
- t = t_fn(log_alpha)
158
- return t
159
-
160
-
161
- def model_wrapper(
162
- model,
163
- noise_schedule,
164
- model_type="noise",
165
- model_kwargs={},
166
- guidance_type="uncond",
167
- condition=None,
168
- unconditional_condition=None,
169
- guidance_scale=1.,
170
- classifier_fn=None,
171
- classifier_kwargs={},
172
- ):
173
- """Create a wrapper function for the noise prediction model.
174
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
175
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
176
- We support four types of the diffusion model by setting `model_type`:
177
- 1. "noise": noise prediction model. (Trained by predicting noise).
178
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
179
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
180
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
181
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
182
- arXiv preprint arXiv:2202.00512 (2022).
183
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
184
- arXiv preprint arXiv:2210.02303 (2022).
185
-
186
- 4. "score": marginal score function. (Trained by denoising score matching).
187
- Note that the score function and the noise prediction model follows a simple relationship:
188
- ```
189
- noise(x_t, t) = -sigma_t * score(x_t, t)
190
- ```
191
- We support three types of guided sampling by DPMs by setting `guidance_type`:
192
- 1. "uncond": unconditional sampling by DPMs.
193
- The input `model` has the following format:
194
- ``
195
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
196
- ``
197
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
198
- The input `model` has the following format:
199
- ``
200
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
201
- ``
202
- The input `classifier_fn` has the following format:
203
- ``
204
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
205
- ``
206
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
207
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
208
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
209
- The input `model` has the following format:
210
- ``
211
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
212
- ``
213
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
214
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
215
- arXiv preprint arXiv:2207.12598 (2022).
216
-
217
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
218
- or continuous-time labels (i.e. epsilon to T).
219
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
220
- ``
221
- def model_fn(x, t_continuous) -> noise:
222
- t_input = get_model_input_time(t_continuous)
223
- return noise_pred(model, x, t_input, **model_kwargs)
224
- ``
225
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
226
- ===============================================================
227
- Args:
228
- model: A diffusion model with the corresponding format described above.
229
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
230
- model_type: A `str`. The parameterization type of the diffusion model.
231
- "noise" or "x_start" or "v" or "score".
232
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
233
- guidance_type: A `str`. The type of the guidance for sampling.
234
- "uncond" or "classifier" or "classifier-free".
235
- condition: A pytorch tensor. The condition for the guided sampling.
236
- Only used for "classifier" or "classifier-free" guidance type.
237
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
238
- Only used for "classifier-free" guidance type.
239
- guidance_scale: A `float`. The scale for the guided sampling.
240
- classifier_fn: A classifier function. Only used for the classifier guidance.
241
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
242
- Returns:
243
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
244
- """
245
-
246
- def get_model_input_time(t_continuous):
247
- """
248
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
249
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
250
- For continuous-time DPMs, we just use `t_continuous`.
251
- """
252
- if noise_schedule.schedule == 'discrete':
253
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
254
- else:
255
- return t_continuous
256
-
257
- def noise_pred_fn(x, t_continuous, cond=None):
258
- if t_continuous.reshape((-1,)).shape[0] == 1:
259
- t_continuous = t_continuous.expand((x.shape[0]))
260
- t_input = get_model_input_time(t_continuous)
261
- if cond is None:
262
- output = model(x, t_input, **model_kwargs)
263
- else:
264
- output = model(x, t_input, cond, **model_kwargs)
265
- if model_type == "noise":
266
- return output
267
- elif model_type == "x_start":
268
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
269
- dims = x.dim()
270
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
271
- elif model_type == "v":
272
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
273
- dims = x.dim()
274
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
275
- elif model_type == "score":
276
- sigma_t = noise_schedule.marginal_std(t_continuous)
277
- dims = x.dim()
278
- return -expand_dims(sigma_t, dims) * output
279
-
280
- def cond_grad_fn(x, t_input):
281
- """
282
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
283
- """
284
- with torch.enable_grad():
285
- x_in = x.detach().requires_grad_(True)
286
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
287
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
288
-
289
- def model_fn(x, t_continuous):
290
- """
291
- The noise predicition model function that is used for DPM-Solver.
292
- """
293
- if t_continuous.reshape((-1,)).shape[0] == 1:
294
- t_continuous = t_continuous.expand((x.shape[0]))
295
- if guidance_type == "uncond":
296
- return noise_pred_fn(x, t_continuous)
297
- elif guidance_type == "classifier":
298
- assert classifier_fn is not None
299
- t_input = get_model_input_time(t_continuous)
300
- cond_grad = cond_grad_fn(x, t_input)
301
- sigma_t = noise_schedule.marginal_std(t_continuous)
302
- noise = noise_pred_fn(x, t_continuous)
303
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
304
- elif guidance_type == "classifier-free":
305
- if guidance_scale == 1. or unconditional_condition is None:
306
- return noise_pred_fn(x, t_continuous, cond=condition)
307
- else:
308
- x_in = torch.cat([x] * 2)
309
- t_in = torch.cat([t_continuous] * 2)
310
- c_in = torch.cat([unconditional_condition, condition])
311
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
312
- return noise_uncond + guidance_scale * (noise - noise_uncond)
313
-
314
- assert model_type in ["noise", "x_start", "v"]
315
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
316
- return model_fn
317
-
318
-
319
- class DPM_Solver:
320
- def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
321
- """Construct a DPM-Solver.
322
- We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
323
- If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
324
- If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
325
- In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
326
- The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
327
- Args:
328
- model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
329
- ``
330
- def model_fn(x, t_continuous):
331
- return noise
332
- ``
333
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
334
- predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
335
- thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
336
- max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
337
-
338
- [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
339
- """
340
- self.model = model_fn
341
- self.noise_schedule = noise_schedule
342
- self.predict_x0 = predict_x0
343
- self.thresholding = thresholding
344
- self.max_val = max_val
345
-
346
- def noise_prediction_fn(self, x, t):
347
- """
348
- Return the noise prediction model.
349
- """
350
- return self.model(x, t)
351
-
352
- def data_prediction_fn(self, x, t):
353
- """
354
- Return the data prediction model (with thresholding).
355
- """
356
- noise = self.noise_prediction_fn(x, t)
357
- dims = x.dim()
358
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
359
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
360
- if self.thresholding:
361
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
362
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
363
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
364
- x0 = torch.clamp(x0, -s, s) / s
365
- return x0
366
-
367
- def model_fn(self, x, t):
368
- """
369
- Convert the model to the noise prediction model or the data prediction model.
370
- """
371
- if self.predict_x0:
372
- return self.data_prediction_fn(x, t)
373
- else:
374
- return self.noise_prediction_fn(x, t)
375
-
376
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
377
- """Compute the intermediate time steps for sampling.
378
- Args:
379
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
380
- - 'logSNR': uniform logSNR for the time steps.
381
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
382
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
383
- t_T: A `float`. The starting time of the sampling (default is T).
384
- t_0: A `float`. The ending time of the sampling (default is epsilon).
385
- N: A `int`. The total number of the spacing of the time steps.
386
- device: A torch device.
387
- Returns:
388
- A pytorch tensor of the time steps, with the shape (N + 1,).
389
- """
390
- if skip_type == 'logSNR':
391
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
392
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
393
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
394
- return self.noise_schedule.inverse_lambda(logSNR_steps)
395
- elif skip_type == 'time_uniform':
396
- return torch.linspace(t_T, t_0, N + 1).to(device)
397
- elif skip_type == 'time_quadratic':
398
- t_order = 2
399
- t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
400
- return t
401
- else:
402
- raise ValueError(
403
- "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
404
-
405
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
406
- """
407
- Get the order of each step for sampling by the singlestep DPM-Solver.
408
- We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
409
- Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
410
- - If order == 1:
411
- We take `steps` of DPM-Solver-1 (i.e. DDIM).
412
- - If order == 2:
413
- - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
414
- - If steps % 2 == 0, we use K steps of DPM-Solver-2.
415
- - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
416
- - If order == 3:
417
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
418
- - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
419
- - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
420
- - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
421
- ============================================
422
- Args:
423
- order: A `int`. The max order for the solver (2 or 3).
424
- steps: A `int`. The total number of function evaluations (NFE).
425
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
426
- - 'logSNR': uniform logSNR for the time steps.
427
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
428
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
429
- t_T: A `float`. The starting time of the sampling (default is T).
430
- t_0: A `float`. The ending time of the sampling (default is epsilon).
431
- device: A torch device.
432
- Returns:
433
- orders: A list of the solver order of each step.
434
- """
435
- if order == 3:
436
- K = steps // 3 + 1
437
- if steps % 3 == 0:
438
- orders = [3, ] * (K - 2) + [2, 1]
439
- elif steps % 3 == 1:
440
- orders = [3, ] * (K - 1) + [1]
441
- else:
442
- orders = [3, ] * (K - 1) + [2]
443
- elif order == 2:
444
- if steps % 2 == 0:
445
- K = steps // 2
446
- orders = [2, ] * K
447
- else:
448
- K = steps // 2 + 1
449
- orders = [2, ] * (K - 1) + [1]
450
- elif order == 1:
451
- K = 1
452
- orders = [1, ] * steps
453
- else:
454
- raise ValueError("'order' must be '1' or '2' or '3'.")
455
- if skip_type == 'logSNR':
456
- # To reproduce the results in DPM-Solver paper
457
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
458
- else:
459
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
460
- torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
461
- return timesteps_outer, orders
462
-
463
- def denoise_to_zero_fn(self, x, s):
464
- """
465
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
466
- """
467
- return self.data_prediction_fn(x, s)
468
-
469
- def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
470
- """
471
- DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
472
- Args:
473
- x: A pytorch tensor. The initial value at time `s`.
474
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
475
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
476
- model_s: A pytorch tensor. The model function evaluated at time `s`.
477
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
478
- return_intermediate: A `bool`. If true, also return the model value at time `s`.
479
- Returns:
480
- x_t: A pytorch tensor. The approximated solution at time `t`.
481
- """
482
- ns = self.noise_schedule
483
- dims = x.dim()
484
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
485
- h = lambda_t - lambda_s
486
- log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
487
- sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
488
- alpha_t = torch.exp(log_alpha_t)
489
-
490
- if self.predict_x0:
491
- phi_1 = torch.expm1(-h)
492
- if model_s is None:
493
- model_s = self.model_fn(x, s)
494
- x_t = (
495
- expand_dims(sigma_t / sigma_s, dims) * x
496
- - expand_dims(alpha_t * phi_1, dims) * model_s
497
- )
498
- if return_intermediate:
499
- return x_t, {'model_s': model_s}
500
- else:
501
- return x_t
502
- else:
503
- phi_1 = torch.expm1(h)
504
- if model_s is None:
505
- model_s = self.model_fn(x, s)
506
- x_t = (
507
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
508
- - expand_dims(sigma_t * phi_1, dims) * model_s
509
- )
510
- if return_intermediate:
511
- return x_t, {'model_s': model_s}
512
- else:
513
- return x_t
514
-
515
- def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
516
- solver_type='dpm_solver'):
517
- """
518
- Singlestep solver DPM-Solver-2 from time `s` to time `t`.
519
- Args:
520
- x: A pytorch tensor. The initial value at time `s`.
521
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
522
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
523
- r1: A `float`. The hyperparameter of the second-order solver.
524
- model_s: A pytorch tensor. The model function evaluated at time `s`.
525
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
526
- return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
527
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
528
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
529
- Returns:
530
- x_t: A pytorch tensor. The approximated solution at time `t`.
531
- """
532
- if solver_type not in ['dpm_solver', 'taylor']:
533
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
534
- if r1 is None:
535
- r1 = 0.5
536
- ns = self.noise_schedule
537
- dims = x.dim()
538
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
539
- h = lambda_t - lambda_s
540
- lambda_s1 = lambda_s + r1 * h
541
- s1 = ns.inverse_lambda(lambda_s1)
542
- log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
543
- s1), ns.marginal_log_mean_coeff(t)
544
- sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
545
- alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
546
-
547
- if self.predict_x0:
548
- phi_11 = torch.expm1(-r1 * h)
549
- phi_1 = torch.expm1(-h)
550
-
551
- if model_s is None:
552
- model_s = self.model_fn(x, s)
553
- x_s1 = (
554
- expand_dims(sigma_s1 / sigma_s, dims) * x
555
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
556
- )
557
- model_s1 = self.model_fn(x_s1, s1)
558
- if solver_type == 'dpm_solver':
559
- x_t = (
560
- expand_dims(sigma_t / sigma_s, dims) * x
561
- - expand_dims(alpha_t * phi_1, dims) * model_s
562
- - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
563
- )
564
- elif solver_type == 'taylor':
565
- x_t = (
566
- expand_dims(sigma_t / sigma_s, dims) * x
567
- - expand_dims(alpha_t * phi_1, dims) * model_s
568
- + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
569
- model_s1 - model_s)
570
- )
571
- else:
572
- phi_11 = torch.expm1(r1 * h)
573
- phi_1 = torch.expm1(h)
574
-
575
- if model_s is None:
576
- model_s = self.model_fn(x, s)
577
- x_s1 = (
578
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
579
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
580
- )
581
- model_s1 = self.model_fn(x_s1, s1)
582
- if solver_type == 'dpm_solver':
583
- x_t = (
584
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
585
- - expand_dims(sigma_t * phi_1, dims) * model_s
586
- - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
587
- )
588
- elif solver_type == 'taylor':
589
- x_t = (
590
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
591
- - expand_dims(sigma_t * phi_1, dims) * model_s
592
- - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
593
- )
594
- if return_intermediate:
595
- return x_t, {'model_s': model_s, 'model_s1': model_s1}
596
- else:
597
- return x_t
598
-
599
- def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
600
- return_intermediate=False, solver_type='dpm_solver'):
601
- """
602
- Singlestep solver DPM-Solver-3 from time `s` to time `t`.
603
- Args:
604
- x: A pytorch tensor. The initial value at time `s`.
605
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
606
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
607
- r1: A `float`. The hyperparameter of the third-order solver.
608
- r2: A `float`. The hyperparameter of the third-order solver.
609
- model_s: A pytorch tensor. The model function evaluated at time `s`.
610
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
611
- model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
612
- If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
613
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
614
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
615
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
616
- Returns:
617
- x_t: A pytorch tensor. The approximated solution at time `t`.
618
- """
619
- if solver_type not in ['dpm_solver', 'taylor']:
620
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
621
- if r1 is None:
622
- r1 = 1. / 3.
623
- if r2 is None:
624
- r2 = 2. / 3.
625
- ns = self.noise_schedule
626
- dims = x.dim()
627
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
628
- h = lambda_t - lambda_s
629
- lambda_s1 = lambda_s + r1 * h
630
- lambda_s2 = lambda_s + r2 * h
631
- s1 = ns.inverse_lambda(lambda_s1)
632
- s2 = ns.inverse_lambda(lambda_s2)
633
- log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
634
- s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
635
- sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
636
- s2), ns.marginal_std(t)
637
- alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
638
-
639
- if self.predict_x0:
640
- phi_11 = torch.expm1(-r1 * h)
641
- phi_12 = torch.expm1(-r2 * h)
642
- phi_1 = torch.expm1(-h)
643
- phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
644
- phi_2 = phi_1 / h + 1.
645
- phi_3 = phi_2 / h - 0.5
646
-
647
- if model_s is None:
648
- model_s = self.model_fn(x, s)
649
- if model_s1 is None:
650
- x_s1 = (
651
- expand_dims(sigma_s1 / sigma_s, dims) * x
652
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
653
- )
654
- model_s1 = self.model_fn(x_s1, s1)
655
- x_s2 = (
656
- expand_dims(sigma_s2 / sigma_s, dims) * x
657
- - expand_dims(alpha_s2 * phi_12, dims) * model_s
658
- + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
659
- )
660
- model_s2 = self.model_fn(x_s2, s2)
661
- if solver_type == 'dpm_solver':
662
- x_t = (
663
- expand_dims(sigma_t / sigma_s, dims) * x
664
- - expand_dims(alpha_t * phi_1, dims) * model_s
665
- + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
666
- )
667
- elif solver_type == 'taylor':
668
- D1_0 = (1. / r1) * (model_s1 - model_s)
669
- D1_1 = (1. / r2) * (model_s2 - model_s)
670
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
671
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
672
- x_t = (
673
- expand_dims(sigma_t / sigma_s, dims) * x
674
- - expand_dims(alpha_t * phi_1, dims) * model_s
675
- + expand_dims(alpha_t * phi_2, dims) * D1
676
- - expand_dims(alpha_t * phi_3, dims) * D2
677
- )
678
- else:
679
- phi_11 = torch.expm1(r1 * h)
680
- phi_12 = torch.expm1(r2 * h)
681
- phi_1 = torch.expm1(h)
682
- phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
683
- phi_2 = phi_1 / h - 1.
684
- phi_3 = phi_2 / h - 0.5
685
-
686
- if model_s is None:
687
- model_s = self.model_fn(x, s)
688
- if model_s1 is None:
689
- x_s1 = (
690
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
691
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
692
- )
693
- model_s1 = self.model_fn(x_s1, s1)
694
- x_s2 = (
695
- expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
696
- - expand_dims(sigma_s2 * phi_12, dims) * model_s
697
- - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
698
- )
699
- model_s2 = self.model_fn(x_s2, s2)
700
- if solver_type == 'dpm_solver':
701
- x_t = (
702
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
703
- - expand_dims(sigma_t * phi_1, dims) * model_s
704
- - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
705
- )
706
- elif solver_type == 'taylor':
707
- D1_0 = (1. / r1) * (model_s1 - model_s)
708
- D1_1 = (1. / r2) * (model_s2 - model_s)
709
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
710
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
711
- x_t = (
712
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
713
- - expand_dims(sigma_t * phi_1, dims) * model_s
714
- - expand_dims(sigma_t * phi_2, dims) * D1
715
- - expand_dims(sigma_t * phi_3, dims) * D2
716
- )
717
-
718
- if return_intermediate:
719
- return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
720
- else:
721
- return x_t
722
-
723
- def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
724
- """
725
- Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
726
- Args:
727
- x: A pytorch tensor. The initial value at time `s`.
728
- model_prev_list: A list of pytorch tensor. The previous computed model values.
729
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
730
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
731
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
732
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
733
- Returns:
734
- x_t: A pytorch tensor. The approximated solution at time `t`.
735
- """
736
- if solver_type not in ['dpm_solver', 'taylor']:
737
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
738
- ns = self.noise_schedule
739
- dims = x.dim()
740
- model_prev_1, model_prev_0 = model_prev_list
741
- t_prev_1, t_prev_0 = t_prev_list
742
- lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
743
- t_prev_0), ns.marginal_lambda(t)
744
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
745
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
746
- alpha_t = torch.exp(log_alpha_t)
747
-
748
- h_0 = lambda_prev_0 - lambda_prev_1
749
- h = lambda_t - lambda_prev_0
750
- r0 = h_0 / h
751
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
752
- if self.predict_x0:
753
- if solver_type == 'dpm_solver':
754
- x_t = (
755
- expand_dims(sigma_t / sigma_prev_0, dims) * x
756
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
757
- - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
758
- )
759
- elif solver_type == 'taylor':
760
- x_t = (
761
- expand_dims(sigma_t / sigma_prev_0, dims) * x
762
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
763
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
764
- )
765
- else:
766
- if solver_type == 'dpm_solver':
767
- x_t = (
768
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
769
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
770
- - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
771
- )
772
- elif solver_type == 'taylor':
773
- x_t = (
774
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
775
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
776
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
777
- )
778
- return x_t
779
-
780
- def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
781
- """
782
- Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
783
- Args:
784
- x: A pytorch tensor. The initial value at time `s`.
785
- model_prev_list: A list of pytorch tensor. The previous computed model values.
786
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
787
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
788
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
789
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
790
- Returns:
791
- x_t: A pytorch tensor. The approximated solution at time `t`.
792
- """
793
- ns = self.noise_schedule
794
- dims = x.dim()
795
- model_prev_2, model_prev_1, model_prev_0 = model_prev_list
796
- t_prev_2, t_prev_1, t_prev_0 = t_prev_list
797
- lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
798
- t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
799
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
800
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
801
- alpha_t = torch.exp(log_alpha_t)
802
-
803
- h_1 = lambda_prev_1 - lambda_prev_2
804
- h_0 = lambda_prev_0 - lambda_prev_1
805
- h = lambda_t - lambda_prev_0
806
- r0, r1 = h_0 / h, h_1 / h
807
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
808
- D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
809
- D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
810
- D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
811
- if self.predict_x0:
812
- x_t = (
813
- expand_dims(sigma_t / sigma_prev_0, dims) * x
814
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
815
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
816
- - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
817
- )
818
- else:
819
- x_t = (
820
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
821
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
822
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
823
- - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
824
- )
825
- return x_t
826
-
827
- def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
828
- r2=None):
829
- """
830
- Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
831
- Args:
832
- x: A pytorch tensor. The initial value at time `s`.
833
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
834
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
835
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
836
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
837
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
838
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
839
- r1: A `float`. The hyperparameter of the second-order or third-order solver.
840
- r2: A `float`. The hyperparameter of the third-order solver.
841
- Returns:
842
- x_t: A pytorch tensor. The approximated solution at time `t`.
843
- """
844
- if order == 1:
845
- return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
846
- elif order == 2:
847
- return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
848
- solver_type=solver_type, r1=r1)
849
- elif order == 3:
850
- return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
851
- solver_type=solver_type, r1=r1, r2=r2)
852
- else:
853
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
854
-
855
- def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
856
- """
857
- Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
858
- Args:
859
- x: A pytorch tensor. The initial value at time `s`.
860
- model_prev_list: A list of pytorch tensor. The previous computed model values.
861
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
862
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
863
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
864
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
865
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
866
- Returns:
867
- x_t: A pytorch tensor. The approximated solution at time `t`.
868
- """
869
- if order == 1:
870
- return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
871
- elif order == 2:
872
- return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
873
- elif order == 3:
874
- return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
875
- else:
876
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
877
-
878
- def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
879
- solver_type='dpm_solver'):
880
- """
881
- The adaptive step size solver based on singlestep DPM-Solver.
882
- Args:
883
- x: A pytorch tensor. The initial value at time `t_T`.
884
- order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
885
- t_T: A `float`. The starting time of the sampling (default is T).
886
- t_0: A `float`. The ending time of the sampling (default is epsilon).
887
- h_init: A `float`. The initial step size (for logSNR).
888
- atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
889
- rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
890
- theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
891
- t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
892
- current time and `t_0` is less than `t_err`. The default setting is 1e-5.
893
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
894
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
895
- Returns:
896
- x_0: A pytorch tensor. The approximated solution at time `t_0`.
897
- [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
898
- """
899
- ns = self.noise_schedule
900
- s = t_T * torch.ones((x.shape[0],)).to(x)
901
- lambda_s = ns.marginal_lambda(s)
902
- lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
903
- h = h_init * torch.ones_like(s).to(x)
904
- x_prev = x
905
- nfe = 0
906
- if order == 2:
907
- r1 = 0.5
908
- lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
909
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
910
- solver_type=solver_type,
911
- **kwargs)
912
- elif order == 3:
913
- r1, r2 = 1. / 3., 2. / 3.
914
- lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
915
- return_intermediate=True,
916
- solver_type=solver_type)
917
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
918
- solver_type=solver_type,
919
- **kwargs)
920
- else:
921
- raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
922
- while torch.abs((s - t_0)).mean() > t_err:
923
- t = ns.inverse_lambda(lambda_s + h)
924
- x_lower, lower_noise_kwargs = lower_update(x, s, t)
925
- x_higher = higher_update(x, s, t, **lower_noise_kwargs)
926
- delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
927
- norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
928
- E = norm_fn((x_higher - x_lower) / delta).max()
929
- if torch.all(E <= 1.):
930
- x = x_higher
931
- s = t
932
- x_prev = x_lower
933
- lambda_s = ns.marginal_lambda(s)
934
- h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
935
- nfe += order
936
- print('adaptive solver nfe', nfe)
937
- return x
938
-
939
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
940
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
941
- atol=0.0078, rtol=0.05,
942
- ):
943
- """
944
- Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
945
- =====================================================
946
- We support the following algorithms for both noise prediction model and data prediction model:
947
- - 'singlestep':
948
- Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
949
- We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
950
- The total number of function evaluations (NFE) == `steps`.
951
- Given a fixed NFE == `steps`, the sampling procedure is:
952
- - If `order` == 1:
953
- - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
954
- - If `order` == 2:
955
- - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
956
- - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
957
- - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
958
- - If `order` == 3:
959
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
960
- - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
961
- - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
962
- - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
963
- - 'multistep':
964
- Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
965
- We initialize the first `order` values by lower order multistep solvers.
966
- Given a fixed NFE == `steps`, the sampling procedure is:
967
- Denote K = steps.
968
- - If `order` == 1:
969
- - We use K steps of DPM-Solver-1 (i.e. DDIM).
970
- - If `order` == 2:
971
- - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
972
- - If `order` == 3:
973
- - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
974
- - 'singlestep_fixed':
975
- Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
976
- We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
977
- - 'adaptive':
978
- Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
979
- We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
980
- You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
981
- (NFE) and the sample quality.
982
- - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
983
- - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
984
- =====================================================
985
- Some advices for choosing the algorithm:
986
- - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
987
- Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
988
- e.g.
989
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
990
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
991
- skip_type='time_uniform', method='singlestep')
992
- - For **guided sampling with large guidance scale** by DPMs:
993
- Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
994
- e.g.
995
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
996
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
997
- skip_type='time_uniform', method='multistep')
998
- We support three types of `skip_type`:
999
- - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1000
- - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1001
- - 'time_quadratic': quadratic time for the time steps.
1002
- =====================================================
1003
- Args:
1004
- x: A pytorch tensor. The initial value at time `t_start`
1005
- e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1006
- steps: A `int`. The total number of function evaluations (NFE).
1007
- t_start: A `float`. The starting time of the sampling.
1008
- If `T` is None, we use self.noise_schedule.T (default is 1.0).
1009
- t_end: A `float`. The ending time of the sampling.
1010
- If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1011
- e.g. if total_N == 1000, we have `t_end` == 1e-3.
1012
- For discrete-time DPMs:
1013
- - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1014
- For continuous-time DPMs:
1015
- - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1016
- order: A `int`. The order of DPM-Solver.
1017
- skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1018
- method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1019
- denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1020
- Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1021
- This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1022
- score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1023
- for diffusion models sampling by diffusion SDEs for low-resolutional images
1024
- (such as CIFAR-10). However, we observed that such trick does not matter for
1025
- high-resolutional images. As it needs an additional NFE, we do not recommend
1026
- it for high-resolutional images.
1027
- lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1028
- Only valid for `method=multistep` and `steps < 15`. We empirically find that
1029
- this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1030
- (especially for steps <= 10). So we recommend to set it to be `True`.
1031
- solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1032
- atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1033
- rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1034
- Returns:
1035
- x_end: A pytorch tensor. The approximated solution at time `t_end`.
1036
- """
1037
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1038
- t_T = self.noise_schedule.T if t_start is None else t_start
1039
- device = x.device
1040
- if method == 'adaptive':
1041
- with torch.no_grad():
1042
- x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1043
- solver_type=solver_type)
1044
- elif method == 'multistep':
1045
- assert steps >= order
1046
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1047
- assert timesteps.shape[0] - 1 == steps
1048
- with torch.no_grad():
1049
- vec_t = timesteps[0].expand((x.shape[0]))
1050
- model_prev_list = [self.model_fn(x, vec_t)]
1051
- t_prev_list = [vec_t]
1052
- # Init the first `order` values by lower order multistep DPM-Solver.
1053
- for init_order in tqdm(range(1, order), desc="DPM init order"):
1054
- vec_t = timesteps[init_order].expand(x.shape[0])
1055
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1056
- solver_type=solver_type)
1057
- model_prev_list.append(self.model_fn(x, vec_t))
1058
- t_prev_list.append(vec_t)
1059
- # Compute the remaining values by `order`-th order multistep DPM-Solver.
1060
- for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
1061
- vec_t = timesteps[step].expand(x.shape[0])
1062
- if lower_order_final and steps < 15:
1063
- step_order = min(order, steps + 1 - step)
1064
- else:
1065
- step_order = order
1066
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
1067
- solver_type=solver_type)
1068
- for i in range(order - 1):
1069
- t_prev_list[i] = t_prev_list[i + 1]
1070
- model_prev_list[i] = model_prev_list[i + 1]
1071
- t_prev_list[-1] = vec_t
1072
- # We do not need to evaluate the final model value.
1073
- if step < steps:
1074
- model_prev_list[-1] = self.model_fn(x, vec_t)
1075
- elif method in ['singlestep', 'singlestep_fixed']:
1076
- if method == 'singlestep':
1077
- timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1078
- skip_type=skip_type,
1079
- t_T=t_T, t_0=t_0,
1080
- device=device)
1081
- elif method == 'singlestep_fixed':
1082
- K = steps // order
1083
- orders = [order, ] * K
1084
- timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1085
- for i, order in enumerate(orders):
1086
- t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1087
- timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1088
- N=order, device=device)
1089
- lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1090
- vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1091
- h = lambda_inner[-1] - lambda_inner[0]
1092
- r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1093
- r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1094
- x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1095
- if denoise_to_zero:
1096
- x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1097
- return x
1098
-
1099
-
1100
- #############################################################
1101
- # other utility functions
1102
- #############################################################
1103
-
1104
- def interpolate_fn(x, xp, yp):
1105
- """
1106
- A piecewise linear function y = f(x), using xp and yp as keypoints.
1107
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
1108
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1109
- Args:
1110
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1111
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1112
- yp: PyTorch tensor with shape [C, K].
1113
- Returns:
1114
- The function values f(x), with shape [N, C].
1115
- """
1116
- N, K = x.shape[0], xp.shape[1]
1117
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1118
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1119
- x_idx = torch.argmin(x_indices, dim=2)
1120
- cand_start_idx = x_idx - 1
1121
- start_idx = torch.where(
1122
- torch.eq(x_idx, 0),
1123
- torch.tensor(1, device=x.device),
1124
- torch.where(
1125
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1126
- ),
1127
- )
1128
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1129
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1130
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1131
- start_idx2 = torch.where(
1132
- torch.eq(x_idx, 0),
1133
- torch.tensor(0, device=x.device),
1134
- torch.where(
1135
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1136
- ),
1137
- )
1138
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1139
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1140
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1141
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1142
- return cand
1143
-
1144
-
1145
- def expand_dims(v, dims):
1146
- """
1147
- Expand the tensor `v` to the dim `dims`.
1148
- Args:
1149
- `v`: a PyTorch tensor with shape [N].
1150
- `dim`: a `int`.
1151
- Returns:
1152
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1153
- """
1154
- return v[(...,) + (None,) * (dims - 1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/dpm_solver/sampler.py DELETED
@@ -1,87 +0,0 @@
1
- """SAMPLING ONLY."""
2
- import torch
3
-
4
- from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
5
-
6
-
7
- MODEL_TYPES = {
8
- "eps": "noise",
9
- "v": "v"
10
- }
11
-
12
-
13
- class DPMSolverSampler(object):
14
- def __init__(self, model, **kwargs):
15
- super().__init__()
16
- self.model = model
17
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
18
- self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
19
-
20
- def register_buffer(self, name, attr):
21
- if type(attr) == torch.Tensor:
22
- if attr.device != torch.device("cuda"):
23
- attr = attr.to(torch.device("cuda"))
24
- setattr(self, name, attr)
25
-
26
- @torch.no_grad()
27
- def sample(self,
28
- S,
29
- batch_size,
30
- shape,
31
- conditioning=None,
32
- callback=None,
33
- normals_sequence=None,
34
- img_callback=None,
35
- quantize_x0=False,
36
- eta=0.,
37
- mask=None,
38
- x0=None,
39
- temperature=1.,
40
- noise_dropout=0.,
41
- score_corrector=None,
42
- corrector_kwargs=None,
43
- verbose=True,
44
- x_T=None,
45
- log_every_t=100,
46
- unconditional_guidance_scale=1.,
47
- unconditional_conditioning=None,
48
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
49
- **kwargs
50
- ):
51
- if conditioning is not None:
52
- if isinstance(conditioning, dict):
53
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
54
- if cbs != batch_size:
55
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
56
- else:
57
- if conditioning.shape[0] != batch_size:
58
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
59
-
60
- # sampling
61
- C, H, W = shape
62
- size = (batch_size, C, H, W)
63
-
64
- print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
65
-
66
- device = self.model.betas.device
67
- if x_T is None:
68
- img = torch.randn(size, device=device)
69
- else:
70
- img = x_T
71
-
72
- ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
73
-
74
- model_fn = model_wrapper(
75
- lambda x, t, c: self.model.apply_model(x, t, c),
76
- ns,
77
- model_type=MODEL_TYPES[self.model.parameterization],
78
- guidance_type="classifier-free",
79
- condition=conditioning,
80
- unconditional_condition=unconditional_conditioning,
81
- guidance_scale=unconditional_guidance_scale,
82
- )
83
-
84
- dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
85
- x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
86
-
87
- return x.to(device), None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/plms.py DELETED
@@ -1,244 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
- from functools import partial
7
-
8
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
- from ldm.models.diffusion.sampling_util import norm_thresholding
10
-
11
-
12
- class PLMSSampler(object):
13
- def __init__(self, model, schedule="linear", **kwargs):
14
- super().__init__()
15
- self.model = model
16
- self.ddpm_num_timesteps = model.num_timesteps
17
- self.schedule = schedule
18
-
19
- def register_buffer(self, name, attr):
20
- if type(attr) == torch.Tensor:
21
- if attr.device != torch.device("cuda"):
22
- attr = attr.to(torch.device("cuda"))
23
- setattr(self, name, attr)
24
-
25
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
- if ddim_eta != 0:
27
- raise ValueError('ddim_eta must be 0 for PLMS')
28
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
- alphas_cumprod = self.model.alphas_cumprod
31
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
-
34
- self.register_buffer('betas', to_torch(self.model.betas))
35
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
-
38
- # calculations for diffusion q(x_t | x_{t-1}) and others
39
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
-
45
- # ddim sampling parameters
46
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
- ddim_timesteps=self.ddim_timesteps,
48
- eta=ddim_eta,verbose=verbose)
49
- self.register_buffer('ddim_sigmas', ddim_sigmas)
50
- self.register_buffer('ddim_alphas', ddim_alphas)
51
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
-
58
- @torch.no_grad()
59
- def sample(self,
60
- S,
61
- batch_size,
62
- shape,
63
- conditioning=None,
64
- callback=None,
65
- normals_sequence=None,
66
- img_callback=None,
67
- quantize_x0=False,
68
- eta=0.,
69
- mask=None,
70
- x0=None,
71
- temperature=1.,
72
- noise_dropout=0.,
73
- score_corrector=None,
74
- corrector_kwargs=None,
75
- verbose=True,
76
- x_T=None,
77
- log_every_t=100,
78
- unconditional_guidance_scale=1.,
79
- unconditional_conditioning=None,
80
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
- dynamic_threshold=None,
82
- **kwargs
83
- ):
84
- if conditioning is not None:
85
- if isinstance(conditioning, dict):
86
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
87
- if cbs != batch_size:
88
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
89
- else:
90
- if conditioning.shape[0] != batch_size:
91
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
92
-
93
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
94
- # sampling
95
- C, H, W = shape
96
- size = (batch_size, C, H, W)
97
- print(f'Data shape for PLMS sampling is {size}')
98
-
99
- samples, intermediates = self.plms_sampling(conditioning, size,
100
- callback=callback,
101
- img_callback=img_callback,
102
- quantize_denoised=quantize_x0,
103
- mask=mask, x0=x0,
104
- ddim_use_original_steps=False,
105
- noise_dropout=noise_dropout,
106
- temperature=temperature,
107
- score_corrector=score_corrector,
108
- corrector_kwargs=corrector_kwargs,
109
- x_T=x_T,
110
- log_every_t=log_every_t,
111
- unconditional_guidance_scale=unconditional_guidance_scale,
112
- unconditional_conditioning=unconditional_conditioning,
113
- dynamic_threshold=dynamic_threshold,
114
- )
115
- return samples, intermediates
116
-
117
- @torch.no_grad()
118
- def plms_sampling(self, cond, shape,
119
- x_T=None, ddim_use_original_steps=False,
120
- callback=None, timesteps=None, quantize_denoised=False,
121
- mask=None, x0=None, img_callback=None, log_every_t=100,
122
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
- unconditional_guidance_scale=1., unconditional_conditioning=None,
124
- dynamic_threshold=None):
125
- device = self.model.betas.device
126
- b = shape[0]
127
- if x_T is None:
128
- img = torch.randn(shape, device=device)
129
- else:
130
- img = x_T
131
-
132
- if timesteps is None:
133
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
134
- elif timesteps is not None and not ddim_use_original_steps:
135
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
136
- timesteps = self.ddim_timesteps[:subset_end]
137
-
138
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
139
- time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
140
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
141
- print(f"Running PLMS Sampling with {total_steps} timesteps")
142
-
143
- iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
144
- old_eps = []
145
-
146
- for i, step in enumerate(iterator):
147
- index = total_steps - i - 1
148
- ts = torch.full((b,), step, device=device, dtype=torch.long)
149
- ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
150
-
151
- if mask is not None:
152
- assert x0 is not None
153
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
154
- img = img_orig * mask + (1. - mask) * img
155
-
156
- outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
157
- quantize_denoised=quantize_denoised, temperature=temperature,
158
- noise_dropout=noise_dropout, score_corrector=score_corrector,
159
- corrector_kwargs=corrector_kwargs,
160
- unconditional_guidance_scale=unconditional_guidance_scale,
161
- unconditional_conditioning=unconditional_conditioning,
162
- old_eps=old_eps, t_next=ts_next,
163
- dynamic_threshold=dynamic_threshold)
164
- img, pred_x0, e_t = outs
165
- old_eps.append(e_t)
166
- if len(old_eps) >= 4:
167
- old_eps.pop(0)
168
- if callback: callback(i)
169
- if img_callback: img_callback(pred_x0, i)
170
-
171
- if index % log_every_t == 0 or index == total_steps - 1:
172
- intermediates['x_inter'].append(img)
173
- intermediates['pred_x0'].append(pred_x0)
174
-
175
- return img, intermediates
176
-
177
- @torch.no_grad()
178
- def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
179
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
180
- unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
181
- dynamic_threshold=None):
182
- b, *_, device = *x.shape, x.device
183
-
184
- def get_model_output(x, t):
185
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
186
- e_t = self.model.apply_model(x, t, c)
187
- else:
188
- x_in = torch.cat([x] * 2)
189
- t_in = torch.cat([t] * 2)
190
- c_in = torch.cat([unconditional_conditioning, c])
191
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
192
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
193
-
194
- if score_corrector is not None:
195
- assert self.model.parameterization == "eps"
196
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
197
-
198
- return e_t
199
-
200
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
201
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
202
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
203
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
204
-
205
- def get_x_prev_and_pred_x0(e_t, index):
206
- # select parameters corresponding to the currently considered timestep
207
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
208
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
209
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
210
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
211
-
212
- # current prediction for x_0
213
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
214
- if quantize_denoised:
215
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
216
- if dynamic_threshold is not None:
217
- pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
218
- # direction pointing to x_t
219
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
220
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
221
- if noise_dropout > 0.:
222
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
223
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
224
- return x_prev, pred_x0
225
-
226
- e_t = get_model_output(x, t)
227
- if len(old_eps) == 0:
228
- # Pseudo Improved Euler (2nd order)
229
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
230
- e_t_next = get_model_output(x_prev, t_next)
231
- e_t_prime = (e_t + e_t_next) / 2
232
- elif len(old_eps) == 1:
233
- # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
234
- e_t_prime = (3 * e_t - old_eps[-1]) / 2
235
- elif len(old_eps) == 2:
236
- # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
237
- e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
238
- elif len(old_eps) >= 3:
239
- # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
240
- e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
241
-
242
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
243
-
244
- return x_prev, pred_x0, e_t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/sampling_util.py DELETED
@@ -1,22 +0,0 @@
1
- import torch
2
- import numpy as np
3
-
4
-
5
- def append_dims(x, target_dims):
6
- """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
- From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
- dims_to_append = target_dims - x.ndim
9
- if dims_to_append < 0:
10
- raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
- return x[(...,) + (None,) * dims_to_append]
12
-
13
-
14
- def norm_thresholding(x0, value):
15
- s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
16
- return x0 * (value / s)
17
-
18
-
19
- def spatial_norm_thresholding(x0, value):
20
- # b c h w
21
- s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
22
- return x0 * (value / s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/attention.py DELETED
@@ -1,341 +0,0 @@
1
- from inspect import isfunction
2
- import math
3
- import torch
4
- import torch.nn.functional as F
5
- from torch import nn, einsum
6
- from einops import rearrange, repeat
7
- from typing import Optional, Any
8
-
9
- from ldm.modules.diffusionmodules.util import checkpoint
10
-
11
-
12
- try:
13
- import xformers
14
- import xformers.ops
15
- XFORMERS_IS_AVAILBLE = True
16
- except:
17
- XFORMERS_IS_AVAILBLE = False
18
-
19
- # CrossAttn precision handling
20
- import os
21
- _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
-
23
- def exists(val):
24
- return val is not None
25
-
26
-
27
- def uniq(arr):
28
- return{el: True for el in arr}.keys()
29
-
30
-
31
- def default(val, d):
32
- if exists(val):
33
- return val
34
- return d() if isfunction(d) else d
35
-
36
-
37
- def max_neg_value(t):
38
- return -torch.finfo(t.dtype).max
39
-
40
-
41
- def init_(tensor):
42
- dim = tensor.shape[-1]
43
- std = 1 / math.sqrt(dim)
44
- tensor.uniform_(-std, std)
45
- return tensor
46
-
47
-
48
- # feedforward
49
- class GEGLU(nn.Module):
50
- def __init__(self, dim_in, dim_out):
51
- super().__init__()
52
- self.proj = nn.Linear(dim_in, dim_out * 2)
53
-
54
- def forward(self, x):
55
- x, gate = self.proj(x).chunk(2, dim=-1)
56
- return x * F.gelu(gate)
57
-
58
-
59
- class FeedForward(nn.Module):
60
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
61
- super().__init__()
62
- inner_dim = int(dim * mult)
63
- dim_out = default(dim_out, dim)
64
- project_in = nn.Sequential(
65
- nn.Linear(dim, inner_dim),
66
- nn.GELU()
67
- ) if not glu else GEGLU(dim, inner_dim)
68
-
69
- self.net = nn.Sequential(
70
- project_in,
71
- nn.Dropout(dropout),
72
- nn.Linear(inner_dim, dim_out)
73
- )
74
-
75
- def forward(self, x):
76
- return self.net(x)
77
-
78
-
79
- def zero_module(module):
80
- """
81
- Zero out the parameters of a module and return it.
82
- """
83
- for p in module.parameters():
84
- p.detach().zero_()
85
- return module
86
-
87
-
88
- def Normalize(in_channels):
89
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
90
-
91
-
92
- class SpatialSelfAttention(nn.Module):
93
- def __init__(self, in_channels):
94
- super().__init__()
95
- self.in_channels = in_channels
96
-
97
- self.norm = Normalize(in_channels)
98
- self.q = torch.nn.Conv2d(in_channels,
99
- in_channels,
100
- kernel_size=1,
101
- stride=1,
102
- padding=0)
103
- self.k = torch.nn.Conv2d(in_channels,
104
- in_channels,
105
- kernel_size=1,
106
- stride=1,
107
- padding=0)
108
- self.v = torch.nn.Conv2d(in_channels,
109
- in_channels,
110
- kernel_size=1,
111
- stride=1,
112
- padding=0)
113
- self.proj_out = torch.nn.Conv2d(in_channels,
114
- in_channels,
115
- kernel_size=1,
116
- stride=1,
117
- padding=0)
118
-
119
- def forward(self, x):
120
- h_ = x
121
- h_ = self.norm(h_)
122
- q = self.q(h_)
123
- k = self.k(h_)
124
- v = self.v(h_)
125
-
126
- # compute attention
127
- b,c,h,w = q.shape
128
- q = rearrange(q, 'b c h w -> b (h w) c')
129
- k = rearrange(k, 'b c h w -> b c (h w)')
130
- w_ = torch.einsum('bij,bjk->bik', q, k)
131
-
132
- w_ = w_ * (int(c)**(-0.5))
133
- w_ = torch.nn.functional.softmax(w_, dim=2)
134
-
135
- # attend to values
136
- v = rearrange(v, 'b c h w -> b c (h w)')
137
- w_ = rearrange(w_, 'b i j -> b j i')
138
- h_ = torch.einsum('bij,bjk->bik', v, w_)
139
- h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
140
- h_ = self.proj_out(h_)
141
-
142
- return x+h_
143
-
144
-
145
- class CrossAttention(nn.Module):
146
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
147
- super().__init__()
148
- inner_dim = dim_head * heads
149
- context_dim = default(context_dim, query_dim)
150
-
151
- self.scale = dim_head ** -0.5
152
- self.heads = heads
153
-
154
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
155
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
156
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
157
-
158
- self.to_out = nn.Sequential(
159
- nn.Linear(inner_dim, query_dim),
160
- nn.Dropout(dropout)
161
- )
162
-
163
- def forward(self, x, context=None, mask=None):
164
- h = self.heads
165
-
166
- q = self.to_q(x)
167
- context = default(context, x)
168
- k = self.to_k(context)
169
- v = self.to_v(context)
170
-
171
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
172
-
173
- # force cast to fp32 to avoid overflowing
174
- if _ATTN_PRECISION =="fp32":
175
- with torch.autocast(enabled=False, device_type = 'cuda'):
176
- q, k = q.float(), k.float()
177
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
178
- else:
179
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
-
181
- del q, k
182
-
183
- if exists(mask):
184
- mask = rearrange(mask, 'b ... -> b (...)')
185
- max_neg_value = -torch.finfo(sim.dtype).max
186
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
187
- sim.masked_fill_(~mask, max_neg_value)
188
-
189
- # attention, what we cannot get enough of
190
- sim = sim.softmax(dim=-1)
191
-
192
- out = einsum('b i j, b j d -> b i d', sim, v)
193
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
194
- return self.to_out(out)
195
-
196
-
197
- class MemoryEfficientCrossAttention(nn.Module):
198
- # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
199
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
200
- super().__init__()
201
- print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
202
- f"{heads} heads.")
203
- inner_dim = dim_head * heads
204
- context_dim = default(context_dim, query_dim)
205
-
206
- self.heads = heads
207
- self.dim_head = dim_head
208
-
209
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
210
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
211
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
212
-
213
- self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
214
- self.attention_op: Optional[Any] = None
215
-
216
- def forward(self, x, context=None, mask=None):
217
- q = self.to_q(x)
218
- context = default(context, x)
219
- k = self.to_k(context)
220
- v = self.to_v(context)
221
-
222
- b, _, _ = q.shape
223
- q, k, v = map(
224
- lambda t: t.unsqueeze(3)
225
- .reshape(b, t.shape[1], self.heads, self.dim_head)
226
- .permute(0, 2, 1, 3)
227
- .reshape(b * self.heads, t.shape[1], self.dim_head)
228
- .contiguous(),
229
- (q, k, v),
230
- )
231
-
232
- # actually compute the attention, what we cannot get enough of
233
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
234
-
235
- if exists(mask):
236
- raise NotImplementedError
237
- out = (
238
- out.unsqueeze(0)
239
- .reshape(b, self.heads, out.shape[1], self.dim_head)
240
- .permute(0, 2, 1, 3)
241
- .reshape(b, out.shape[1], self.heads * self.dim_head)
242
- )
243
- return self.to_out(out)
244
-
245
-
246
- class BasicTransformerBlock(nn.Module):
247
- ATTENTION_MODES = {
248
- "softmax": CrossAttention, # vanilla attention
249
- "softmax-xformers": MemoryEfficientCrossAttention
250
- }
251
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
252
- disable_self_attn=False):
253
- super().__init__()
254
- attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
255
- assert attn_mode in self.ATTENTION_MODES
256
- attn_cls = self.ATTENTION_MODES[attn_mode]
257
- self.disable_self_attn = disable_self_attn
258
- self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
259
- context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
260
- self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
261
- self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
262
- heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
263
- self.norm1 = nn.LayerNorm(dim)
264
- self.norm2 = nn.LayerNorm(dim)
265
- self.norm3 = nn.LayerNorm(dim)
266
- self.checkpoint = checkpoint
267
-
268
- def forward(self, x, context=None):
269
- return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
270
-
271
- def _forward(self, x, context=None):
272
- x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
273
- x = self.attn2(self.norm2(x), context=context) + x
274
- x = self.ff(self.norm3(x)) + x
275
- return x
276
-
277
-
278
- class SpatialTransformer(nn.Module):
279
- """
280
- Transformer block for image-like data.
281
- First, project the input (aka embedding)
282
- and reshape to b, t, d.
283
- Then apply standard transformer action.
284
- Finally, reshape to image
285
- NEW: use_linear for more efficiency instead of the 1x1 convs
286
- """
287
- def __init__(self, in_channels, n_heads, d_head,
288
- depth=1, dropout=0., context_dim=None,
289
- disable_self_attn=False, use_linear=False,
290
- use_checkpoint=True):
291
- super().__init__()
292
- if exists(context_dim) and not isinstance(context_dim, list):
293
- context_dim = [context_dim]
294
- self.in_channels = in_channels
295
- inner_dim = n_heads * d_head
296
- self.norm = Normalize(in_channels)
297
- if not use_linear:
298
- self.proj_in = nn.Conv2d(in_channels,
299
- inner_dim,
300
- kernel_size=1,
301
- stride=1,
302
- padding=0)
303
- else:
304
- self.proj_in = nn.Linear(in_channels, inner_dim)
305
-
306
- self.transformer_blocks = nn.ModuleList(
307
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
308
- disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
309
- for d in range(depth)]
310
- )
311
- if not use_linear:
312
- self.proj_out = zero_module(nn.Conv2d(inner_dim,
313
- in_channels,
314
- kernel_size=1,
315
- stride=1,
316
- padding=0))
317
- else:
318
- self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
319
- self.use_linear = use_linear
320
-
321
- def forward(self, x, context=None):
322
- # note: if no context is given, cross-attention defaults to self-attention
323
- if not isinstance(context, list):
324
- context = [context]
325
- b, c, h, w = x.shape
326
- x_in = x
327
- x = self.norm(x)
328
- if not self.use_linear:
329
- x = self.proj_in(x)
330
- x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
331
- if self.use_linear:
332
- x = self.proj_in(x)
333
- for i, block in enumerate(self.transformer_blocks):
334
- x = block(x, context=context[i])
335
- if self.use_linear:
336
- x = self.proj_out(x)
337
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
338
- if not self.use_linear:
339
- x = self.proj_out(x)
340
- return x + x_in
341
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/__init__.py DELETED
File without changes
ldm/modules/diffusionmodules/model.py DELETED
@@ -1,852 +0,0 @@
1
- # pytorch_diffusion + derived encoder decoder
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from einops import rearrange
7
- from typing import Optional, Any
8
-
9
- from ldm.modules.attention import MemoryEfficientCrossAttention
10
-
11
- try:
12
- import xformers
13
- import xformers.ops
14
- XFORMERS_IS_AVAILBLE = True
15
- except:
16
- XFORMERS_IS_AVAILBLE = False
17
- print("No module 'xformers'. Proceeding without it.")
18
-
19
-
20
- def get_timestep_embedding(timesteps, embedding_dim):
21
- """
22
- This matches the implementation in Denoising Diffusion Probabilistic Models:
23
- From Fairseq.
24
- Build sinusoidal embeddings.
25
- This matches the implementation in tensor2tensor, but differs slightly
26
- from the description in Section 3.5 of "Attention Is All You Need".
27
- """
28
- assert len(timesteps.shape) == 1
29
-
30
- half_dim = embedding_dim // 2
31
- emb = math.log(10000) / (half_dim - 1)
32
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
- emb = emb.to(device=timesteps.device)
34
- emb = timesteps.float()[:, None] * emb[None, :]
35
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
- if embedding_dim % 2 == 1: # zero pad
37
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
- return emb
39
-
40
-
41
- def nonlinearity(x):
42
- # swish
43
- return x*torch.sigmoid(x)
44
-
45
-
46
- def Normalize(in_channels, num_groups=32):
47
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
-
49
-
50
- class Upsample(nn.Module):
51
- def __init__(self, in_channels, with_conv):
52
- super().__init__()
53
- self.with_conv = with_conv
54
- if self.with_conv:
55
- self.conv = torch.nn.Conv2d(in_channels,
56
- in_channels,
57
- kernel_size=3,
58
- stride=1,
59
- padding=1)
60
-
61
- def forward(self, x):
62
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
- if self.with_conv:
64
- x = self.conv(x)
65
- return x
66
-
67
-
68
- class Downsample(nn.Module):
69
- def __init__(self, in_channels, with_conv):
70
- super().__init__()
71
- self.with_conv = with_conv
72
- if self.with_conv:
73
- # no asymmetric padding in torch conv, must do it ourselves
74
- self.conv = torch.nn.Conv2d(in_channels,
75
- in_channels,
76
- kernel_size=3,
77
- stride=2,
78
- padding=0)
79
-
80
- def forward(self, x):
81
- if self.with_conv:
82
- pad = (0,1,0,1)
83
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
- x = self.conv(x)
85
- else:
86
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
- return x
88
-
89
-
90
- class ResnetBlock(nn.Module):
91
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
- dropout, temb_channels=512):
93
- super().__init__()
94
- self.in_channels = in_channels
95
- out_channels = in_channels if out_channels is None else out_channels
96
- self.out_channels = out_channels
97
- self.use_conv_shortcut = conv_shortcut
98
-
99
- self.norm1 = Normalize(in_channels)
100
- self.conv1 = torch.nn.Conv2d(in_channels,
101
- out_channels,
102
- kernel_size=3,
103
- stride=1,
104
- padding=1)
105
- if temb_channels > 0:
106
- self.temb_proj = torch.nn.Linear(temb_channels,
107
- out_channels)
108
- self.norm2 = Normalize(out_channels)
109
- self.dropout = torch.nn.Dropout(dropout)
110
- self.conv2 = torch.nn.Conv2d(out_channels,
111
- out_channels,
112
- kernel_size=3,
113
- stride=1,
114
- padding=1)
115
- if self.in_channels != self.out_channels:
116
- if self.use_conv_shortcut:
117
- self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
- out_channels,
119
- kernel_size=3,
120
- stride=1,
121
- padding=1)
122
- else:
123
- self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
- out_channels,
125
- kernel_size=1,
126
- stride=1,
127
- padding=0)
128
-
129
- def forward(self, x, temb):
130
- h = x
131
- h = self.norm1(h)
132
- h = nonlinearity(h)
133
- h = self.conv1(h)
134
-
135
- if temb is not None:
136
- h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
-
138
- h = self.norm2(h)
139
- h = nonlinearity(h)
140
- h = self.dropout(h)
141
- h = self.conv2(h)
142
-
143
- if self.in_channels != self.out_channels:
144
- if self.use_conv_shortcut:
145
- x = self.conv_shortcut(x)
146
- else:
147
- x = self.nin_shortcut(x)
148
-
149
- return x+h
150
-
151
-
152
- class AttnBlock(nn.Module):
153
- def __init__(self, in_channels):
154
- super().__init__()
155
- self.in_channels = in_channels
156
-
157
- self.norm = Normalize(in_channels)
158
- self.q = torch.nn.Conv2d(in_channels,
159
- in_channels,
160
- kernel_size=1,
161
- stride=1,
162
- padding=0)
163
- self.k = torch.nn.Conv2d(in_channels,
164
- in_channels,
165
- kernel_size=1,
166
- stride=1,
167
- padding=0)
168
- self.v = torch.nn.Conv2d(in_channels,
169
- in_channels,
170
- kernel_size=1,
171
- stride=1,
172
- padding=0)
173
- self.proj_out = torch.nn.Conv2d(in_channels,
174
- in_channels,
175
- kernel_size=1,
176
- stride=1,
177
- padding=0)
178
-
179
- def forward(self, x):
180
- h_ = x
181
- h_ = self.norm(h_)
182
- q = self.q(h_)
183
- k = self.k(h_)
184
- v = self.v(h_)
185
-
186
- # compute attention
187
- b,c,h,w = q.shape
188
- q = q.reshape(b,c,h*w)
189
- q = q.permute(0,2,1) # b,hw,c
190
- k = k.reshape(b,c,h*w) # b,c,hw
191
- w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
- w_ = w_ * (int(c)**(-0.5))
193
- w_ = torch.nn.functional.softmax(w_, dim=2)
194
-
195
- # attend to values
196
- v = v.reshape(b,c,h*w)
197
- w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
- h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
- h_ = h_.reshape(b,c,h,w)
200
-
201
- h_ = self.proj_out(h_)
202
-
203
- return x+h_
204
-
205
- class MemoryEfficientAttnBlock(nn.Module):
206
- """
207
- Uses xformers efficient implementation,
208
- see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
- Note: this is a single-head self-attention operation
210
- """
211
- #
212
- def __init__(self, in_channels):
213
- super().__init__()
214
- self.in_channels = in_channels
215
-
216
- self.norm = Normalize(in_channels)
217
- self.q = torch.nn.Conv2d(in_channels,
218
- in_channels,
219
- kernel_size=1,
220
- stride=1,
221
- padding=0)
222
- self.k = torch.nn.Conv2d(in_channels,
223
- in_channels,
224
- kernel_size=1,
225
- stride=1,
226
- padding=0)
227
- self.v = torch.nn.Conv2d(in_channels,
228
- in_channels,
229
- kernel_size=1,
230
- stride=1,
231
- padding=0)
232
- self.proj_out = torch.nn.Conv2d(in_channels,
233
- in_channels,
234
- kernel_size=1,
235
- stride=1,
236
- padding=0)
237
- self.attention_op: Optional[Any] = None
238
-
239
- def forward(self, x):
240
- h_ = x
241
- h_ = self.norm(h_)
242
- q = self.q(h_)
243
- k = self.k(h_)
244
- v = self.v(h_)
245
-
246
- # compute attention
247
- B, C, H, W = q.shape
248
- q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
-
250
- q, k, v = map(
251
- lambda t: t.unsqueeze(3)
252
- .reshape(B, t.shape[1], 1, C)
253
- .permute(0, 2, 1, 3)
254
- .reshape(B * 1, t.shape[1], C)
255
- .contiguous(),
256
- (q, k, v),
257
- )
258
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
-
260
- out = (
261
- out.unsqueeze(0)
262
- .reshape(B, 1, out.shape[1], C)
263
- .permute(0, 2, 1, 3)
264
- .reshape(B, out.shape[1], C)
265
- )
266
- out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
- out = self.proj_out(out)
268
- return x+out
269
-
270
-
271
- class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
- def forward(self, x, context=None, mask=None):
273
- b, c, h, w = x.shape
274
- x = rearrange(x, 'b c h w -> b (h w) c')
275
- out = super().forward(x, context=context, mask=mask)
276
- out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
- return x + out
278
-
279
-
280
- def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
- assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
- if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
- attn_type = "vanilla-xformers"
284
- print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
- if attn_type == "vanilla":
286
- assert attn_kwargs is None
287
- return AttnBlock(in_channels)
288
- elif attn_type == "vanilla-xformers":
289
- print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
- return MemoryEfficientAttnBlock(in_channels)
291
- elif type == "memory-efficient-cross-attn":
292
- attn_kwargs["query_dim"] = in_channels
293
- return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
- elif attn_type == "none":
295
- return nn.Identity(in_channels)
296
- else:
297
- raise NotImplementedError()
298
-
299
-
300
- class Model(nn.Module):
301
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
- super().__init__()
305
- if use_linear_attn: attn_type = "linear"
306
- self.ch = ch
307
- self.temb_ch = self.ch*4
308
- self.num_resolutions = len(ch_mult)
309
- self.num_res_blocks = num_res_blocks
310
- self.resolution = resolution
311
- self.in_channels = in_channels
312
-
313
- self.use_timestep = use_timestep
314
- if self.use_timestep:
315
- # timestep embedding
316
- self.temb = nn.Module()
317
- self.temb.dense = nn.ModuleList([
318
- torch.nn.Linear(self.ch,
319
- self.temb_ch),
320
- torch.nn.Linear(self.temb_ch,
321
- self.temb_ch),
322
- ])
323
-
324
- # downsampling
325
- self.conv_in = torch.nn.Conv2d(in_channels,
326
- self.ch,
327
- kernel_size=3,
328
- stride=1,
329
- padding=1)
330
-
331
- curr_res = resolution
332
- in_ch_mult = (1,)+tuple(ch_mult)
333
- self.down = nn.ModuleList()
334
- for i_level in range(self.num_resolutions):
335
- block = nn.ModuleList()
336
- attn = nn.ModuleList()
337
- block_in = ch*in_ch_mult[i_level]
338
- block_out = ch*ch_mult[i_level]
339
- for i_block in range(self.num_res_blocks):
340
- block.append(ResnetBlock(in_channels=block_in,
341
- out_channels=block_out,
342
- temb_channels=self.temb_ch,
343
- dropout=dropout))
344
- block_in = block_out
345
- if curr_res in attn_resolutions:
346
- attn.append(make_attn(block_in, attn_type=attn_type))
347
- down = nn.Module()
348
- down.block = block
349
- down.attn = attn
350
- if i_level != self.num_resolutions-1:
351
- down.downsample = Downsample(block_in, resamp_with_conv)
352
- curr_res = curr_res // 2
353
- self.down.append(down)
354
-
355
- # middle
356
- self.mid = nn.Module()
357
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
- out_channels=block_in,
359
- temb_channels=self.temb_ch,
360
- dropout=dropout)
361
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
- out_channels=block_in,
364
- temb_channels=self.temb_ch,
365
- dropout=dropout)
366
-
367
- # upsampling
368
- self.up = nn.ModuleList()
369
- for i_level in reversed(range(self.num_resolutions)):
370
- block = nn.ModuleList()
371
- attn = nn.ModuleList()
372
- block_out = ch*ch_mult[i_level]
373
- skip_in = ch*ch_mult[i_level]
374
- for i_block in range(self.num_res_blocks+1):
375
- if i_block == self.num_res_blocks:
376
- skip_in = ch*in_ch_mult[i_level]
377
- block.append(ResnetBlock(in_channels=block_in+skip_in,
378
- out_channels=block_out,
379
- temb_channels=self.temb_ch,
380
- dropout=dropout))
381
- block_in = block_out
382
- if curr_res in attn_resolutions:
383
- attn.append(make_attn(block_in, attn_type=attn_type))
384
- up = nn.Module()
385
- up.block = block
386
- up.attn = attn
387
- if i_level != 0:
388
- up.upsample = Upsample(block_in, resamp_with_conv)
389
- curr_res = curr_res * 2
390
- self.up.insert(0, up) # prepend to get consistent order
391
-
392
- # end
393
- self.norm_out = Normalize(block_in)
394
- self.conv_out = torch.nn.Conv2d(block_in,
395
- out_ch,
396
- kernel_size=3,
397
- stride=1,
398
- padding=1)
399
-
400
- def forward(self, x, t=None, context=None):
401
- #assert x.shape[2] == x.shape[3] == self.resolution
402
- if context is not None:
403
- # assume aligned context, cat along channel axis
404
- x = torch.cat((x, context), dim=1)
405
- if self.use_timestep:
406
- # timestep embedding
407
- assert t is not None
408
- temb = get_timestep_embedding(t, self.ch)
409
- temb = self.temb.dense[0](temb)
410
- temb = nonlinearity(temb)
411
- temb = self.temb.dense[1](temb)
412
- else:
413
- temb = None
414
-
415
- # downsampling
416
- hs = [self.conv_in(x)]
417
- for i_level in range(self.num_resolutions):
418
- for i_block in range(self.num_res_blocks):
419
- h = self.down[i_level].block[i_block](hs[-1], temb)
420
- if len(self.down[i_level].attn) > 0:
421
- h = self.down[i_level].attn[i_block](h)
422
- hs.append(h)
423
- if i_level != self.num_resolutions-1:
424
- hs.append(self.down[i_level].downsample(hs[-1]))
425
-
426
- # middle
427
- h = hs[-1]
428
- h = self.mid.block_1(h, temb)
429
- h = self.mid.attn_1(h)
430
- h = self.mid.block_2(h, temb)
431
-
432
- # upsampling
433
- for i_level in reversed(range(self.num_resolutions)):
434
- for i_block in range(self.num_res_blocks+1):
435
- h = self.up[i_level].block[i_block](
436
- torch.cat([h, hs.pop()], dim=1), temb)
437
- if len(self.up[i_level].attn) > 0:
438
- h = self.up[i_level].attn[i_block](h)
439
- if i_level != 0:
440
- h = self.up[i_level].upsample(h)
441
-
442
- # end
443
- h = self.norm_out(h)
444
- h = nonlinearity(h)
445
- h = self.conv_out(h)
446
- return h
447
-
448
- def get_last_layer(self):
449
- return self.conv_out.weight
450
-
451
-
452
- class Encoder(nn.Module):
453
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
- **ignore_kwargs):
457
- super().__init__()
458
- if use_linear_attn: attn_type = "linear"
459
- self.ch = ch
460
- self.temb_ch = 0
461
- self.num_resolutions = len(ch_mult)
462
- self.num_res_blocks = num_res_blocks
463
- self.resolution = resolution
464
- self.in_channels = in_channels
465
-
466
- # downsampling
467
- self.conv_in = torch.nn.Conv2d(in_channels,
468
- self.ch,
469
- kernel_size=3,
470
- stride=1,
471
- padding=1)
472
-
473
- curr_res = resolution
474
- in_ch_mult = (1,)+tuple(ch_mult)
475
- self.in_ch_mult = in_ch_mult
476
- self.down = nn.ModuleList()
477
- for i_level in range(self.num_resolutions):
478
- block = nn.ModuleList()
479
- attn = nn.ModuleList()
480
- block_in = ch*in_ch_mult[i_level]
481
- block_out = ch*ch_mult[i_level]
482
- for i_block in range(self.num_res_blocks):
483
- block.append(ResnetBlock(in_channels=block_in,
484
- out_channels=block_out,
485
- temb_channels=self.temb_ch,
486
- dropout=dropout))
487
- block_in = block_out
488
- if curr_res in attn_resolutions:
489
- attn.append(make_attn(block_in, attn_type=attn_type))
490
- down = nn.Module()
491
- down.block = block
492
- down.attn = attn
493
- if i_level != self.num_resolutions-1:
494
- down.downsample = Downsample(block_in, resamp_with_conv)
495
- curr_res = curr_res // 2
496
- self.down.append(down)
497
-
498
- # middle
499
- self.mid = nn.Module()
500
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
- out_channels=block_in,
502
- temb_channels=self.temb_ch,
503
- dropout=dropout)
504
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
- out_channels=block_in,
507
- temb_channels=self.temb_ch,
508
- dropout=dropout)
509
-
510
- # end
511
- self.norm_out = Normalize(block_in)
512
- self.conv_out = torch.nn.Conv2d(block_in,
513
- 2*z_channels if double_z else z_channels,
514
- kernel_size=3,
515
- stride=1,
516
- padding=1)
517
-
518
- def forward(self, x):
519
- # timestep embedding
520
- temb = None
521
-
522
- # downsampling
523
- hs = [self.conv_in(x)]
524
- for i_level in range(self.num_resolutions):
525
- for i_block in range(self.num_res_blocks):
526
- h = self.down[i_level].block[i_block](hs[-1], temb)
527
- if len(self.down[i_level].attn) > 0:
528
- h = self.down[i_level].attn[i_block](h)
529
- hs.append(h)
530
- if i_level != self.num_resolutions-1:
531
- hs.append(self.down[i_level].downsample(hs[-1]))
532
-
533
- # middle
534
- h = hs[-1]
535
- h = self.mid.block_1(h, temb)
536
- h = self.mid.attn_1(h)
537
- h = self.mid.block_2(h, temb)
538
-
539
- # end
540
- h = self.norm_out(h)
541
- h = nonlinearity(h)
542
- h = self.conv_out(h)
543
- return h
544
-
545
-
546
- class Decoder(nn.Module):
547
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
- attn_type="vanilla", **ignorekwargs):
551
- super().__init__()
552
- if use_linear_attn: attn_type = "linear"
553
- self.ch = ch
554
- self.temb_ch = 0
555
- self.num_resolutions = len(ch_mult)
556
- self.num_res_blocks = num_res_blocks
557
- self.resolution = resolution
558
- self.in_channels = in_channels
559
- self.give_pre_end = give_pre_end
560
- self.tanh_out = tanh_out
561
-
562
- # compute in_ch_mult, block_in and curr_res at lowest res
563
- in_ch_mult = (1,)+tuple(ch_mult)
564
- block_in = ch*ch_mult[self.num_resolutions-1]
565
- curr_res = resolution // 2**(self.num_resolutions-1)
566
- self.z_shape = (1,z_channels,curr_res,curr_res)
567
- print("Working with z of shape {} = {} dimensions.".format(
568
- self.z_shape, np.prod(self.z_shape)))
569
-
570
- # z to block_in
571
- self.conv_in = torch.nn.Conv2d(z_channels,
572
- block_in,
573
- kernel_size=3,
574
- stride=1,
575
- padding=1)
576
-
577
- # middle
578
- self.mid = nn.Module()
579
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
- out_channels=block_in,
581
- temb_channels=self.temb_ch,
582
- dropout=dropout)
583
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
- out_channels=block_in,
586
- temb_channels=self.temb_ch,
587
- dropout=dropout)
588
-
589
- # upsampling
590
- self.up = nn.ModuleList()
591
- for i_level in reversed(range(self.num_resolutions)):
592
- block = nn.ModuleList()
593
- attn = nn.ModuleList()
594
- block_out = ch*ch_mult[i_level]
595
- for i_block in range(self.num_res_blocks+1):
596
- block.append(ResnetBlock(in_channels=block_in,
597
- out_channels=block_out,
598
- temb_channels=self.temb_ch,
599
- dropout=dropout))
600
- block_in = block_out
601
- if curr_res in attn_resolutions:
602
- attn.append(make_attn(block_in, attn_type=attn_type))
603
- up = nn.Module()
604
- up.block = block
605
- up.attn = attn
606
- if i_level != 0:
607
- up.upsample = Upsample(block_in, resamp_with_conv)
608
- curr_res = curr_res * 2
609
- self.up.insert(0, up) # prepend to get consistent order
610
-
611
- # end
612
- self.norm_out = Normalize(block_in)
613
- self.conv_out = torch.nn.Conv2d(block_in,
614
- out_ch,
615
- kernel_size=3,
616
- stride=1,
617
- padding=1)
618
-
619
- def forward(self, z):
620
- #assert z.shape[1:] == self.z_shape[1:]
621
- self.last_z_shape = z.shape
622
-
623
- # timestep embedding
624
- temb = None
625
-
626
- # z to block_in
627
- h = self.conv_in(z)
628
-
629
- # middle
630
- h = self.mid.block_1(h, temb)
631
- h = self.mid.attn_1(h)
632
- h = self.mid.block_2(h, temb)
633
-
634
- # upsampling
635
- for i_level in reversed(range(self.num_resolutions)):
636
- for i_block in range(self.num_res_blocks+1):
637
- h = self.up[i_level].block[i_block](h, temb)
638
- if len(self.up[i_level].attn) > 0:
639
- h = self.up[i_level].attn[i_block](h)
640
- if i_level != 0:
641
- h = self.up[i_level].upsample(h)
642
-
643
- # end
644
- if self.give_pre_end:
645
- return h
646
-
647
- h = self.norm_out(h)
648
- h = nonlinearity(h)
649
- h = self.conv_out(h)
650
- if self.tanh_out:
651
- h = torch.tanh(h)
652
- return h
653
-
654
-
655
- class SimpleDecoder(nn.Module):
656
- def __init__(self, in_channels, out_channels, *args, **kwargs):
657
- super().__init__()
658
- self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
- ResnetBlock(in_channels=in_channels,
660
- out_channels=2 * in_channels,
661
- temb_channels=0, dropout=0.0),
662
- ResnetBlock(in_channels=2 * in_channels,
663
- out_channels=4 * in_channels,
664
- temb_channels=0, dropout=0.0),
665
- ResnetBlock(in_channels=4 * in_channels,
666
- out_channels=2 * in_channels,
667
- temb_channels=0, dropout=0.0),
668
- nn.Conv2d(2*in_channels, in_channels, 1),
669
- Upsample(in_channels, with_conv=True)])
670
- # end
671
- self.norm_out = Normalize(in_channels)
672
- self.conv_out = torch.nn.Conv2d(in_channels,
673
- out_channels,
674
- kernel_size=3,
675
- stride=1,
676
- padding=1)
677
-
678
- def forward(self, x):
679
- for i, layer in enumerate(self.model):
680
- if i in [1,2,3]:
681
- x = layer(x, None)
682
- else:
683
- x = layer(x)
684
-
685
- h = self.norm_out(x)
686
- h = nonlinearity(h)
687
- x = self.conv_out(h)
688
- return x
689
-
690
-
691
- class UpsampleDecoder(nn.Module):
692
- def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
- ch_mult=(2,2), dropout=0.0):
694
- super().__init__()
695
- # upsampling
696
- self.temb_ch = 0
697
- self.num_resolutions = len(ch_mult)
698
- self.num_res_blocks = num_res_blocks
699
- block_in = in_channels
700
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
- self.res_blocks = nn.ModuleList()
702
- self.upsample_blocks = nn.ModuleList()
703
- for i_level in range(self.num_resolutions):
704
- res_block = []
705
- block_out = ch * ch_mult[i_level]
706
- for i_block in range(self.num_res_blocks + 1):
707
- res_block.append(ResnetBlock(in_channels=block_in,
708
- out_channels=block_out,
709
- temb_channels=self.temb_ch,
710
- dropout=dropout))
711
- block_in = block_out
712
- self.res_blocks.append(nn.ModuleList(res_block))
713
- if i_level != self.num_resolutions - 1:
714
- self.upsample_blocks.append(Upsample(block_in, True))
715
- curr_res = curr_res * 2
716
-
717
- # end
718
- self.norm_out = Normalize(block_in)
719
- self.conv_out = torch.nn.Conv2d(block_in,
720
- out_channels,
721
- kernel_size=3,
722
- stride=1,
723
- padding=1)
724
-
725
- def forward(self, x):
726
- # upsampling
727
- h = x
728
- for k, i_level in enumerate(range(self.num_resolutions)):
729
- for i_block in range(self.num_res_blocks + 1):
730
- h = self.res_blocks[i_level][i_block](h, None)
731
- if i_level != self.num_resolutions - 1:
732
- h = self.upsample_blocks[k](h)
733
- h = self.norm_out(h)
734
- h = nonlinearity(h)
735
- h = self.conv_out(h)
736
- return h
737
-
738
-
739
- class LatentRescaler(nn.Module):
740
- def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
- super().__init__()
742
- # residual block, interpolate, residual block
743
- self.factor = factor
744
- self.conv_in = nn.Conv2d(in_channels,
745
- mid_channels,
746
- kernel_size=3,
747
- stride=1,
748
- padding=1)
749
- self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
- out_channels=mid_channels,
751
- temb_channels=0,
752
- dropout=0.0) for _ in range(depth)])
753
- self.attn = AttnBlock(mid_channels)
754
- self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
- out_channels=mid_channels,
756
- temb_channels=0,
757
- dropout=0.0) for _ in range(depth)])
758
-
759
- self.conv_out = nn.Conv2d(mid_channels,
760
- out_channels,
761
- kernel_size=1,
762
- )
763
-
764
- def forward(self, x):
765
- x = self.conv_in(x)
766
- for block in self.res_block1:
767
- x = block(x, None)
768
- x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
- x = self.attn(x)
770
- for block in self.res_block2:
771
- x = block(x, None)
772
- x = self.conv_out(x)
773
- return x
774
-
775
-
776
- class MergedRescaleEncoder(nn.Module):
777
- def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
- attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
- ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
- super().__init__()
781
- intermediate_chn = ch * ch_mult[-1]
782
- self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
- z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
- attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
- out_ch=None)
786
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
- mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
-
789
- def forward(self, x):
790
- x = self.encoder(x)
791
- x = self.rescaler(x)
792
- return x
793
-
794
-
795
- class MergedRescaleDecoder(nn.Module):
796
- def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
- dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
- super().__init__()
799
- tmp_chn = z_channels*ch_mult[-1]
800
- self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
- resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
- ch_mult=ch_mult, resolution=resolution, ch=ch)
803
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
- out_channels=tmp_chn, depth=rescale_module_depth)
805
-
806
- def forward(self, x):
807
- x = self.rescaler(x)
808
- x = self.decoder(x)
809
- return x
810
-
811
-
812
- class Upsampler(nn.Module):
813
- def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
- super().__init__()
815
- assert out_size >= in_size
816
- num_blocks = int(np.log2(out_size//in_size))+1
817
- factor_up = 1.+ (out_size % in_size)
818
- print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
- self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
- out_channels=in_channels)
821
- self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
- attn_resolutions=[], in_channels=None, ch=in_channels,
823
- ch_mult=[ch_mult for _ in range(num_blocks)])
824
-
825
- def forward(self, x):
826
- x = self.rescaler(x)
827
- x = self.decoder(x)
828
- return x
829
-
830
-
831
- class Resize(nn.Module):
832
- def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
- super().__init__()
834
- self.with_conv = learned
835
- self.mode = mode
836
- if self.with_conv:
837
- print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
- raise NotImplementedError()
839
- assert in_channels is not None
840
- # no asymmetric padding in torch conv, must do it ourselves
841
- self.conv = torch.nn.Conv2d(in_channels,
842
- in_channels,
843
- kernel_size=4,
844
- stride=2,
845
- padding=1)
846
-
847
- def forward(self, x, scale_factor=1.0):
848
- if scale_factor==1.0:
849
- return x
850
- else:
851
- x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/openaimodel.py DELETED
@@ -1,786 +0,0 @@
1
- from abc import abstractmethod
2
- import math
3
-
4
- import numpy as np
5
- import torch as th
6
- import torch.nn as nn
7
- import torch.nn.functional as F
8
-
9
- from ldm.modules.diffusionmodules.util import (
10
- checkpoint,
11
- conv_nd,
12
- linear,
13
- avg_pool_nd,
14
- zero_module,
15
- normalization,
16
- timestep_embedding,
17
- )
18
- from ldm.modules.attention import SpatialTransformer
19
- from ldm.util import exists
20
-
21
-
22
- # dummy replace
23
- def convert_module_to_f16(x):
24
- pass
25
-
26
- def convert_module_to_f32(x):
27
- pass
28
-
29
-
30
- ## go
31
- class AttentionPool2d(nn.Module):
32
- """
33
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
34
- """
35
-
36
- def __init__(
37
- self,
38
- spacial_dim: int,
39
- embed_dim: int,
40
- num_heads_channels: int,
41
- output_dim: int = None,
42
- ):
43
- super().__init__()
44
- self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
45
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
46
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
47
- self.num_heads = embed_dim // num_heads_channels
48
- self.attention = QKVAttention(self.num_heads)
49
-
50
- def forward(self, x):
51
- b, c, *_spatial = x.shape
52
- x = x.reshape(b, c, -1) # NC(HW)
53
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
54
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
55
- x = self.qkv_proj(x)
56
- x = self.attention(x)
57
- x = self.c_proj(x)
58
- return x[:, :, 0]
59
-
60
-
61
- class TimestepBlock(nn.Module):
62
- """
63
- Any module where forward() takes timestep embeddings as a second argument.
64
- """
65
-
66
- @abstractmethod
67
- def forward(self, x, emb):
68
- """
69
- Apply the module to `x` given `emb` timestep embeddings.
70
- """
71
-
72
-
73
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
74
- """
75
- A sequential module that passes timestep embeddings to the children that
76
- support it as an extra input.
77
- """
78
-
79
- def forward(self, x, emb, context=None):
80
- for layer in self:
81
- if isinstance(layer, TimestepBlock):
82
- x = layer(x, emb)
83
- elif isinstance(layer, SpatialTransformer):
84
- x = layer(x, context)
85
- else:
86
- x = layer(x)
87
- return x
88
-
89
-
90
- class Upsample(nn.Module):
91
- """
92
- An upsampling layer with an optional convolution.
93
- :param channels: channels in the inputs and outputs.
94
- :param use_conv: a bool determining if a convolution is applied.
95
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
96
- upsampling occurs in the inner-two dimensions.
97
- """
98
-
99
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
100
- super().__init__()
101
- self.channels = channels
102
- self.out_channels = out_channels or channels
103
- self.use_conv = use_conv
104
- self.dims = dims
105
- if use_conv:
106
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
107
-
108
- def forward(self, x):
109
- assert x.shape[1] == self.channels
110
- if self.dims == 3:
111
- x = F.interpolate(
112
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
113
- )
114
- else:
115
- x = F.interpolate(x, scale_factor=2, mode="nearest")
116
- if self.use_conv:
117
- x = self.conv(x)
118
- return x
119
-
120
- class TransposedUpsample(nn.Module):
121
- 'Learned 2x upsampling without padding'
122
- def __init__(self, channels, out_channels=None, ks=5):
123
- super().__init__()
124
- self.channels = channels
125
- self.out_channels = out_channels or channels
126
-
127
- self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
128
-
129
- def forward(self,x):
130
- return self.up(x)
131
-
132
-
133
- class Downsample(nn.Module):
134
- """
135
- A downsampling layer with an optional convolution.
136
- :param channels: channels in the inputs and outputs.
137
- :param use_conv: a bool determining if a convolution is applied.
138
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
139
- downsampling occurs in the inner-two dimensions.
140
- """
141
-
142
- def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
143
- super().__init__()
144
- self.channels = channels
145
- self.out_channels = out_channels or channels
146
- self.use_conv = use_conv
147
- self.dims = dims
148
- stride = 2 if dims != 3 else (1, 2, 2)
149
- if use_conv:
150
- self.op = conv_nd(
151
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
152
- )
153
- else:
154
- assert self.channels == self.out_channels
155
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
156
-
157
- def forward(self, x):
158
- assert x.shape[1] == self.channels
159
- return self.op(x)
160
-
161
-
162
- class ResBlock(TimestepBlock):
163
- """
164
- A residual block that can optionally change the number of channels.
165
- :param channels: the number of input channels.
166
- :param emb_channels: the number of timestep embedding channels.
167
- :param dropout: the rate of dropout.
168
- :param out_channels: if specified, the number of out channels.
169
- :param use_conv: if True and out_channels is specified, use a spatial
170
- convolution instead of a smaller 1x1 convolution to change the
171
- channels in the skip connection.
172
- :param dims: determines if the signal is 1D, 2D, or 3D.
173
- :param use_checkpoint: if True, use gradient checkpointing on this module.
174
- :param up: if True, use this block for upsampling.
175
- :param down: if True, use this block for downsampling.
176
- """
177
-
178
- def __init__(
179
- self,
180
- channels,
181
- emb_channels,
182
- dropout,
183
- out_channels=None,
184
- use_conv=False,
185
- use_scale_shift_norm=False,
186
- dims=2,
187
- use_checkpoint=False,
188
- up=False,
189
- down=False,
190
- ):
191
- super().__init__()
192
- self.channels = channels
193
- self.emb_channels = emb_channels
194
- self.dropout = dropout
195
- self.out_channels = out_channels or channels
196
- self.use_conv = use_conv
197
- self.use_checkpoint = use_checkpoint
198
- self.use_scale_shift_norm = use_scale_shift_norm
199
-
200
- self.in_layers = nn.Sequential(
201
- normalization(channels),
202
- nn.SiLU(),
203
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
204
- )
205
-
206
- self.updown = up or down
207
-
208
- if up:
209
- self.h_upd = Upsample(channels, False, dims)
210
- self.x_upd = Upsample(channels, False, dims)
211
- elif down:
212
- self.h_upd = Downsample(channels, False, dims)
213
- self.x_upd = Downsample(channels, False, dims)
214
- else:
215
- self.h_upd = self.x_upd = nn.Identity()
216
-
217
- self.emb_layers = nn.Sequential(
218
- nn.SiLU(),
219
- linear(
220
- emb_channels,
221
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
222
- ),
223
- )
224
- self.out_layers = nn.Sequential(
225
- normalization(self.out_channels),
226
- nn.SiLU(),
227
- nn.Dropout(p=dropout),
228
- zero_module(
229
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
230
- ),
231
- )
232
-
233
- if self.out_channels == channels:
234
- self.skip_connection = nn.Identity()
235
- elif use_conv:
236
- self.skip_connection = conv_nd(
237
- dims, channels, self.out_channels, 3, padding=1
238
- )
239
- else:
240
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
241
-
242
- def forward(self, x, emb):
243
- """
244
- Apply the block to a Tensor, conditioned on a timestep embedding.
245
- :param x: an [N x C x ...] Tensor of features.
246
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
247
- :return: an [N x C x ...] Tensor of outputs.
248
- """
249
- return checkpoint(
250
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
251
- )
252
-
253
-
254
- def _forward(self, x, emb):
255
- if self.updown:
256
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
257
- h = in_rest(x)
258
- h = self.h_upd(h)
259
- x = self.x_upd(x)
260
- h = in_conv(h)
261
- else:
262
- h = self.in_layers(x)
263
- emb_out = self.emb_layers(emb).type(h.dtype)
264
- while len(emb_out.shape) < len(h.shape):
265
- emb_out = emb_out[..., None]
266
- if self.use_scale_shift_norm:
267
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
268
- scale, shift = th.chunk(emb_out, 2, dim=1)
269
- h = out_norm(h) * (1 + scale) + shift
270
- h = out_rest(h)
271
- else:
272
- h = h + emb_out
273
- h = self.out_layers(h)
274
- return self.skip_connection(x) + h
275
-
276
-
277
- class AttentionBlock(nn.Module):
278
- """
279
- An attention block that allows spatial positions to attend to each other.
280
- Originally ported from here, but adapted to the N-d case.
281
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
282
- """
283
-
284
- def __init__(
285
- self,
286
- channels,
287
- num_heads=1,
288
- num_head_channels=-1,
289
- use_checkpoint=False,
290
- use_new_attention_order=False,
291
- ):
292
- super().__init__()
293
- self.channels = channels
294
- if num_head_channels == -1:
295
- self.num_heads = num_heads
296
- else:
297
- assert (
298
- channels % num_head_channels == 0
299
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
300
- self.num_heads = channels // num_head_channels
301
- self.use_checkpoint = use_checkpoint
302
- self.norm = normalization(channels)
303
- self.qkv = conv_nd(1, channels, channels * 3, 1)
304
- if use_new_attention_order:
305
- # split qkv before split heads
306
- self.attention = QKVAttention(self.num_heads)
307
- else:
308
- # split heads before split qkv
309
- self.attention = QKVAttentionLegacy(self.num_heads)
310
-
311
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
312
-
313
- def forward(self, x):
314
- return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
315
- #return pt_checkpoint(self._forward, x) # pytorch
316
-
317
- def _forward(self, x):
318
- b, c, *spatial = x.shape
319
- x = x.reshape(b, c, -1)
320
- qkv = self.qkv(self.norm(x))
321
- h = self.attention(qkv)
322
- h = self.proj_out(h)
323
- return (x + h).reshape(b, c, *spatial)
324
-
325
-
326
- def count_flops_attn(model, _x, y):
327
- """
328
- A counter for the `thop` package to count the operations in an
329
- attention operation.
330
- Meant to be used like:
331
- macs, params = thop.profile(
332
- model,
333
- inputs=(inputs, timestamps),
334
- custom_ops={QKVAttention: QKVAttention.count_flops},
335
- )
336
- """
337
- b, c, *spatial = y[0].shape
338
- num_spatial = int(np.prod(spatial))
339
- # We perform two matmuls with the same number of ops.
340
- # The first computes the weight matrix, the second computes
341
- # the combination of the value vectors.
342
- matmul_ops = 2 * b * (num_spatial ** 2) * c
343
- model.total_ops += th.DoubleTensor([matmul_ops])
344
-
345
-
346
- class QKVAttentionLegacy(nn.Module):
347
- """
348
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
349
- """
350
-
351
- def __init__(self, n_heads):
352
- super().__init__()
353
- self.n_heads = n_heads
354
-
355
- def forward(self, qkv):
356
- """
357
- Apply QKV attention.
358
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
359
- :return: an [N x (H * C) x T] tensor after attention.
360
- """
361
- bs, width, length = qkv.shape
362
- assert width % (3 * self.n_heads) == 0
363
- ch = width // (3 * self.n_heads)
364
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
365
- scale = 1 / math.sqrt(math.sqrt(ch))
366
- weight = th.einsum(
367
- "bct,bcs->bts", q * scale, k * scale
368
- ) # More stable with f16 than dividing afterwards
369
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
370
- a = th.einsum("bts,bcs->bct", weight, v)
371
- return a.reshape(bs, -1, length)
372
-
373
- @staticmethod
374
- def count_flops(model, _x, y):
375
- return count_flops_attn(model, _x, y)
376
-
377
-
378
- class QKVAttention(nn.Module):
379
- """
380
- A module which performs QKV attention and splits in a different order.
381
- """
382
-
383
- def __init__(self, n_heads):
384
- super().__init__()
385
- self.n_heads = n_heads
386
-
387
- def forward(self, qkv):
388
- """
389
- Apply QKV attention.
390
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
391
- :return: an [N x (H * C) x T] tensor after attention.
392
- """
393
- bs, width, length = qkv.shape
394
- assert width % (3 * self.n_heads) == 0
395
- ch = width // (3 * self.n_heads)
396
- q, k, v = qkv.chunk(3, dim=1)
397
- scale = 1 / math.sqrt(math.sqrt(ch))
398
- weight = th.einsum(
399
- "bct,bcs->bts",
400
- (q * scale).view(bs * self.n_heads, ch, length),
401
- (k * scale).view(bs * self.n_heads, ch, length),
402
- ) # More stable with f16 than dividing afterwards
403
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
404
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
405
- return a.reshape(bs, -1, length)
406
-
407
- @staticmethod
408
- def count_flops(model, _x, y):
409
- return count_flops_attn(model, _x, y)
410
-
411
-
412
- class UNetModel(nn.Module):
413
- """
414
- The full UNet model with attention and timestep embedding.
415
- :param in_channels: channels in the input Tensor.
416
- :param model_channels: base channel count for the model.
417
- :param out_channels: channels in the output Tensor.
418
- :param num_res_blocks: number of residual blocks per downsample.
419
- :param attention_resolutions: a collection of downsample rates at which
420
- attention will take place. May be a set, list, or tuple.
421
- For example, if this contains 4, then at 4x downsampling, attention
422
- will be used.
423
- :param dropout: the dropout probability.
424
- :param channel_mult: channel multiplier for each level of the UNet.
425
- :param conv_resample: if True, use learned convolutions for upsampling and
426
- downsampling.
427
- :param dims: determines if the signal is 1D, 2D, or 3D.
428
- :param num_classes: if specified (as an int), then this model will be
429
- class-conditional with `num_classes` classes.
430
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
431
- :param num_heads: the number of attention heads in each attention layer.
432
- :param num_heads_channels: if specified, ignore num_heads and instead use
433
- a fixed channel width per attention head.
434
- :param num_heads_upsample: works with num_heads to set a different number
435
- of heads for upsampling. Deprecated.
436
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
437
- :param resblock_updown: use residual blocks for up/downsampling.
438
- :param use_new_attention_order: use a different attention pattern for potentially
439
- increased efficiency.
440
- """
441
-
442
- def __init__(
443
- self,
444
- image_size,
445
- in_channels,
446
- model_channels,
447
- out_channels,
448
- num_res_blocks,
449
- attention_resolutions,
450
- dropout=0,
451
- channel_mult=(1, 2, 4, 8),
452
- conv_resample=True,
453
- dims=2,
454
- num_classes=None,
455
- use_checkpoint=False,
456
- use_fp16=False,
457
- num_heads=-1,
458
- num_head_channels=-1,
459
- num_heads_upsample=-1,
460
- use_scale_shift_norm=False,
461
- resblock_updown=False,
462
- use_new_attention_order=False,
463
- use_spatial_transformer=False, # custom transformer support
464
- transformer_depth=1, # custom transformer support
465
- context_dim=None, # custom transformer support
466
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
467
- legacy=True,
468
- disable_self_attentions=None,
469
- num_attention_blocks=None,
470
- disable_middle_self_attn=False,
471
- use_linear_in_transformer=False,
472
- ):
473
- super().__init__()
474
- if use_spatial_transformer:
475
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
476
-
477
- if context_dim is not None:
478
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
479
- from omegaconf.listconfig import ListConfig
480
- if type(context_dim) == ListConfig:
481
- context_dim = list(context_dim)
482
-
483
- if num_heads_upsample == -1:
484
- num_heads_upsample = num_heads
485
-
486
- if num_heads == -1:
487
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
488
-
489
- if num_head_channels == -1:
490
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
491
-
492
- self.image_size = image_size
493
- self.in_channels = in_channels
494
- self.model_channels = model_channels
495
- self.out_channels = out_channels
496
- if isinstance(num_res_blocks, int):
497
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
498
- else:
499
- if len(num_res_blocks) != len(channel_mult):
500
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
501
- "as a list/tuple (per-level) with the same length as channel_mult")
502
- self.num_res_blocks = num_res_blocks
503
- if disable_self_attentions is not None:
504
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
505
- assert len(disable_self_attentions) == len(channel_mult)
506
- if num_attention_blocks is not None:
507
- assert len(num_attention_blocks) == len(self.num_res_blocks)
508
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
509
- print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
510
- f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
511
- f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
512
- f"attention will still not be set.")
513
-
514
- self.attention_resolutions = attention_resolutions
515
- self.dropout = dropout
516
- self.channel_mult = channel_mult
517
- self.conv_resample = conv_resample
518
- self.num_classes = num_classes
519
- self.use_checkpoint = use_checkpoint
520
- self.dtype = th.float16 if use_fp16 else th.float32
521
- self.num_heads = num_heads
522
- self.num_head_channels = num_head_channels
523
- self.num_heads_upsample = num_heads_upsample
524
- self.predict_codebook_ids = n_embed is not None
525
-
526
- time_embed_dim = model_channels * 4
527
- self.time_embed = nn.Sequential(
528
- linear(model_channels, time_embed_dim),
529
- nn.SiLU(),
530
- linear(time_embed_dim, time_embed_dim),
531
- )
532
-
533
- if self.num_classes is not None:
534
- if isinstance(self.num_classes, int):
535
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
536
- elif self.num_classes == "continuous":
537
- print("setting up linear c_adm embedding layer")
538
- self.label_emb = nn.Linear(1, time_embed_dim)
539
- else:
540
- raise ValueError()
541
-
542
- self.input_blocks = nn.ModuleList(
543
- [
544
- TimestepEmbedSequential(
545
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
546
- )
547
- ]
548
- )
549
- self._feature_size = model_channels
550
- input_block_chans = [model_channels]
551
- ch = model_channels
552
- ds = 1
553
- for level, mult in enumerate(channel_mult):
554
- for nr in range(self.num_res_blocks[level]):
555
- layers = [
556
- ResBlock(
557
- ch,
558
- time_embed_dim,
559
- dropout,
560
- out_channels=mult * model_channels,
561
- dims=dims,
562
- use_checkpoint=use_checkpoint,
563
- use_scale_shift_norm=use_scale_shift_norm,
564
- )
565
- ]
566
- ch = mult * model_channels
567
- if ds in attention_resolutions:
568
- if num_head_channels == -1:
569
- dim_head = ch // num_heads
570
- else:
571
- num_heads = ch // num_head_channels
572
- dim_head = num_head_channels
573
- if legacy:
574
- #num_heads = 1
575
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
576
- if exists(disable_self_attentions):
577
- disabled_sa = disable_self_attentions[level]
578
- else:
579
- disabled_sa = False
580
-
581
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
582
- layers.append(
583
- AttentionBlock(
584
- ch,
585
- use_checkpoint=use_checkpoint,
586
- num_heads=num_heads,
587
- num_head_channels=dim_head,
588
- use_new_attention_order=use_new_attention_order,
589
- ) if not use_spatial_transformer else SpatialTransformer(
590
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
591
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
592
- use_checkpoint=use_checkpoint
593
- )
594
- )
595
- self.input_blocks.append(TimestepEmbedSequential(*layers))
596
- self._feature_size += ch
597
- input_block_chans.append(ch)
598
- if level != len(channel_mult) - 1:
599
- out_ch = ch
600
- self.input_blocks.append(
601
- TimestepEmbedSequential(
602
- ResBlock(
603
- ch,
604
- time_embed_dim,
605
- dropout,
606
- out_channels=out_ch,
607
- dims=dims,
608
- use_checkpoint=use_checkpoint,
609
- use_scale_shift_norm=use_scale_shift_norm,
610
- down=True,
611
- )
612
- if resblock_updown
613
- else Downsample(
614
- ch, conv_resample, dims=dims, out_channels=out_ch
615
- )
616
- )
617
- )
618
- ch = out_ch
619
- input_block_chans.append(ch)
620
- ds *= 2
621
- self._feature_size += ch
622
-
623
- if num_head_channels == -1:
624
- dim_head = ch // num_heads
625
- else:
626
- num_heads = ch // num_head_channels
627
- dim_head = num_head_channels
628
- if legacy:
629
- #num_heads = 1
630
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
631
- self.middle_block = TimestepEmbedSequential(
632
- ResBlock(
633
- ch,
634
- time_embed_dim,
635
- dropout,
636
- dims=dims,
637
- use_checkpoint=use_checkpoint,
638
- use_scale_shift_norm=use_scale_shift_norm,
639
- ),
640
- AttentionBlock(
641
- ch,
642
- use_checkpoint=use_checkpoint,
643
- num_heads=num_heads,
644
- num_head_channels=dim_head,
645
- use_new_attention_order=use_new_attention_order,
646
- ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
647
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
648
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
649
- use_checkpoint=use_checkpoint
650
- ),
651
- ResBlock(
652
- ch,
653
- time_embed_dim,
654
- dropout,
655
- dims=dims,
656
- use_checkpoint=use_checkpoint,
657
- use_scale_shift_norm=use_scale_shift_norm,
658
- ),
659
- )
660
- self._feature_size += ch
661
-
662
- self.output_blocks = nn.ModuleList([])
663
- for level, mult in list(enumerate(channel_mult))[::-1]:
664
- for i in range(self.num_res_blocks[level] + 1):
665
- ich = input_block_chans.pop()
666
- layers = [
667
- ResBlock(
668
- ch + ich,
669
- time_embed_dim,
670
- dropout,
671
- out_channels=model_channels * mult,
672
- dims=dims,
673
- use_checkpoint=use_checkpoint,
674
- use_scale_shift_norm=use_scale_shift_norm,
675
- )
676
- ]
677
- ch = model_channels * mult
678
- if ds in attention_resolutions:
679
- if num_head_channels == -1:
680
- dim_head = ch // num_heads
681
- else:
682
- num_heads = ch // num_head_channels
683
- dim_head = num_head_channels
684
- if legacy:
685
- #num_heads = 1
686
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
687
- if exists(disable_self_attentions):
688
- disabled_sa = disable_self_attentions[level]
689
- else:
690
- disabled_sa = False
691
-
692
- if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
693
- layers.append(
694
- AttentionBlock(
695
- ch,
696
- use_checkpoint=use_checkpoint,
697
- num_heads=num_heads_upsample,
698
- num_head_channels=dim_head,
699
- use_new_attention_order=use_new_attention_order,
700
- ) if not use_spatial_transformer else SpatialTransformer(
701
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
702
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
703
- use_checkpoint=use_checkpoint
704
- )
705
- )
706
- if level and i == self.num_res_blocks[level]:
707
- out_ch = ch
708
- layers.append(
709
- ResBlock(
710
- ch,
711
- time_embed_dim,
712
- dropout,
713
- out_channels=out_ch,
714
- dims=dims,
715
- use_checkpoint=use_checkpoint,
716
- use_scale_shift_norm=use_scale_shift_norm,
717
- up=True,
718
- )
719
- if resblock_updown
720
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
721
- )
722
- ds //= 2
723
- self.output_blocks.append(TimestepEmbedSequential(*layers))
724
- self._feature_size += ch
725
-
726
- self.out = nn.Sequential(
727
- normalization(ch),
728
- nn.SiLU(),
729
- zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
730
- )
731
- if self.predict_codebook_ids:
732
- self.id_predictor = nn.Sequential(
733
- normalization(ch),
734
- conv_nd(dims, model_channels, n_embed, 1),
735
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
736
- )
737
-
738
- def convert_to_fp16(self):
739
- """
740
- Convert the torso of the model to float16.
741
- """
742
- self.input_blocks.apply(convert_module_to_f16)
743
- self.middle_block.apply(convert_module_to_f16)
744
- self.output_blocks.apply(convert_module_to_f16)
745
-
746
- def convert_to_fp32(self):
747
- """
748
- Convert the torso of the model to float32.
749
- """
750
- self.input_blocks.apply(convert_module_to_f32)
751
- self.middle_block.apply(convert_module_to_f32)
752
- self.output_blocks.apply(convert_module_to_f32)
753
-
754
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
755
- """
756
- Apply the model to an input batch.
757
- :param x: an [N x C x ...] Tensor of inputs.
758
- :param timesteps: a 1-D batch of timesteps.
759
- :param context: conditioning plugged in via crossattn
760
- :param y: an [N] Tensor of labels, if class-conditional.
761
- :return: an [N x C x ...] Tensor of outputs.
762
- """
763
- assert (y is not None) == (
764
- self.num_classes is not None
765
- ), "must specify y if and only if the model is class-conditional"
766
- hs = []
767
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
768
- emb = self.time_embed(t_emb)
769
-
770
- if self.num_classes is not None:
771
- assert y.shape[0] == x.shape[0]
772
- emb = emb + self.label_emb(y)
773
-
774
- h = x.type(self.dtype)
775
- for module in self.input_blocks:
776
- h = module(h, emb, context)
777
- hs.append(h)
778
- h = self.middle_block(h, emb, context)
779
- for module in self.output_blocks:
780
- h = th.cat([h, hs.pop()], dim=1)
781
- h = module(h, emb, context)
782
- h = h.type(x.dtype)
783
- if self.predict_codebook_ids:
784
- return self.id_predictor(h)
785
- else:
786
- return self.out(h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/upscaling.py DELETED
@@ -1,81 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import numpy as np
4
- from functools import partial
5
-
6
- from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
7
- from ldm.util import default
8
-
9
-
10
- class AbstractLowScaleModel(nn.Module):
11
- # for concatenating a downsampled image to the latent representation
12
- def __init__(self, noise_schedule_config=None):
13
- super(AbstractLowScaleModel, self).__init__()
14
- if noise_schedule_config is not None:
15
- self.register_schedule(**noise_schedule_config)
16
-
17
- def register_schedule(self, beta_schedule="linear", timesteps=1000,
18
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
19
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
20
- cosine_s=cosine_s)
21
- alphas = 1. - betas
22
- alphas_cumprod = np.cumprod(alphas, axis=0)
23
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
24
-
25
- timesteps, = betas.shape
26
- self.num_timesteps = int(timesteps)
27
- self.linear_start = linear_start
28
- self.linear_end = linear_end
29
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
30
-
31
- to_torch = partial(torch.tensor, dtype=torch.float32)
32
-
33
- self.register_buffer('betas', to_torch(betas))
34
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
36
-
37
- # calculations for diffusion q(x_t | x_{t-1}) and others
38
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
39
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
40
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
41
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
42
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
43
-
44
- def q_sample(self, x_start, t, noise=None):
45
- noise = default(noise, lambda: torch.randn_like(x_start))
46
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
47
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
48
-
49
- def forward(self, x):
50
- return x, None
51
-
52
- def decode(self, x):
53
- return x
54
-
55
-
56
- class SimpleImageConcat(AbstractLowScaleModel):
57
- # no noise level conditioning
58
- def __init__(self):
59
- super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
60
- self.max_noise_level = 0
61
-
62
- def forward(self, x):
63
- # fix to constant noise level
64
- return x, torch.zeros(x.shape[0], device=x.device).long()
65
-
66
-
67
- class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
68
- def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
69
- super().__init__(noise_schedule_config=noise_schedule_config)
70
- self.max_noise_level = max_noise_level
71
-
72
- def forward(self, x, noise_level=None):
73
- if noise_level is None:
74
- noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
75
- else:
76
- assert isinstance(noise_level, torch.Tensor)
77
- z = self.q_sample(x, noise_level)
78
- return z, noise_level
79
-
80
-
81
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/util.py DELETED
@@ -1,270 +0,0 @@
1
- # adopted from
2
- # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
- # and
4
- # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
- # and
6
- # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
- #
8
- # thanks!
9
-
10
-
11
- import os
12
- import math
13
- import torch
14
- import torch.nn as nn
15
- import numpy as np
16
- from einops import repeat
17
-
18
- from ldm.util import instantiate_from_config
19
-
20
-
21
- def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
- if schedule == "linear":
23
- betas = (
24
- torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
- )
26
-
27
- elif schedule == "cosine":
28
- timesteps = (
29
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
- )
31
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
- alphas = torch.cos(alphas).pow(2)
33
- alphas = alphas / alphas[0]
34
- betas = 1 - alphas[1:] / alphas[:-1]
35
- betas = np.clip(betas, a_min=0, a_max=0.999)
36
-
37
- elif schedule == "sqrt_linear":
38
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
- elif schedule == "sqrt":
40
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
- else:
42
- raise ValueError(f"schedule '{schedule}' unknown.")
43
- return betas.numpy()
44
-
45
-
46
- def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
- if ddim_discr_method == 'uniform':
48
- c = num_ddpm_timesteps // num_ddim_timesteps
49
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
- elif ddim_discr_method == 'quad':
51
- ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
- else:
53
- raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
-
55
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
- steps_out = ddim_timesteps + 1
58
- if verbose:
59
- print(f'Selected timesteps for ddim sampler: {steps_out}')
60
- return steps_out
61
-
62
-
63
- def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
- # select alphas for computing the variance schedule
65
- alphas = alphacums[ddim_timesteps]
66
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
-
68
- # according the the formula provided in https://arxiv.org/abs/2010.02502
69
- sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
- if verbose:
71
- print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
- print(f'For the chosen value of eta, which is {eta}, '
73
- f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
- return sigmas, alphas, alphas_prev
75
-
76
-
77
- def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
- """
79
- Create a beta schedule that discretizes the given alpha_t_bar function,
80
- which defines the cumulative product of (1-beta) over time from t = [0,1].
81
- :param num_diffusion_timesteps: the number of betas to produce.
82
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
- produces the cumulative product of (1-beta) up to that
84
- part of the diffusion process.
85
- :param max_beta: the maximum beta to use; use values lower than 1 to
86
- prevent singularities.
87
- """
88
- betas = []
89
- for i in range(num_diffusion_timesteps):
90
- t1 = i / num_diffusion_timesteps
91
- t2 = (i + 1) / num_diffusion_timesteps
92
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
- return np.array(betas)
94
-
95
-
96
- def extract_into_tensor(a, t, x_shape):
97
- b, *_ = t.shape
98
- out = a.gather(-1, t)
99
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
-
101
-
102
- def checkpoint(func, inputs, params, flag):
103
- """
104
- Evaluate a function without caching intermediate activations, allowing for
105
- reduced memory at the expense of extra compute in the backward pass.
106
- :param func: the function to evaluate.
107
- :param inputs: the argument sequence to pass to `func`.
108
- :param params: a sequence of parameters `func` depends on but does not
109
- explicitly take as arguments.
110
- :param flag: if False, disable gradient checkpointing.
111
- """
112
- if flag:
113
- args = tuple(inputs) + tuple(params)
114
- return CheckpointFunction.apply(func, len(inputs), *args)
115
- else:
116
- return func(*inputs)
117
-
118
-
119
- class CheckpointFunction(torch.autograd.Function):
120
- @staticmethod
121
- def forward(ctx, run_function, length, *args):
122
- ctx.run_function = run_function
123
- ctx.input_tensors = list(args[:length])
124
- ctx.input_params = list(args[length:])
125
- ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
126
- "dtype": torch.get_autocast_gpu_dtype(),
127
- "cache_enabled": torch.is_autocast_cache_enabled()}
128
- with torch.no_grad():
129
- output_tensors = ctx.run_function(*ctx.input_tensors)
130
- return output_tensors
131
-
132
- @staticmethod
133
- def backward(ctx, *output_grads):
134
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
135
- with torch.enable_grad(), \
136
- torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
137
- # Fixes a bug where the first op in run_function modifies the
138
- # Tensor storage in place, which is not allowed for detach()'d
139
- # Tensors.
140
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
141
- output_tensors = ctx.run_function(*shallow_copies)
142
- input_grads = torch.autograd.grad(
143
- output_tensors,
144
- ctx.input_tensors + ctx.input_params,
145
- output_grads,
146
- allow_unused=True,
147
- )
148
- del ctx.input_tensors
149
- del ctx.input_params
150
- del output_tensors
151
- return (None, None) + input_grads
152
-
153
-
154
- def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
155
- """
156
- Create sinusoidal timestep embeddings.
157
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
158
- These may be fractional.
159
- :param dim: the dimension of the output.
160
- :param max_period: controls the minimum frequency of the embeddings.
161
- :return: an [N x dim] Tensor of positional embeddings.
162
- """
163
- if not repeat_only:
164
- half = dim // 2
165
- freqs = torch.exp(
166
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
167
- ).to(device=timesteps.device)
168
- args = timesteps[:, None].float() * freqs[None]
169
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
170
- if dim % 2:
171
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
172
- else:
173
- embedding = repeat(timesteps, 'b -> b d', d=dim)
174
- return embedding
175
-
176
-
177
- def zero_module(module):
178
- """
179
- Zero out the parameters of a module and return it.
180
- """
181
- for p in module.parameters():
182
- p.detach().zero_()
183
- return module
184
-
185
-
186
- def scale_module(module, scale):
187
- """
188
- Scale the parameters of a module and return it.
189
- """
190
- for p in module.parameters():
191
- p.detach().mul_(scale)
192
- return module
193
-
194
-
195
- def mean_flat(tensor):
196
- """
197
- Take the mean over all non-batch dimensions.
198
- """
199
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
200
-
201
-
202
- def normalization(channels):
203
- """
204
- Make a standard normalization layer.
205
- :param channels: number of input channels.
206
- :return: an nn.Module for normalization.
207
- """
208
- return GroupNorm32(32, channels)
209
-
210
-
211
- # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
212
- class SiLU(nn.Module):
213
- def forward(self, x):
214
- return x * torch.sigmoid(x)
215
-
216
-
217
- class GroupNorm32(nn.GroupNorm):
218
- def forward(self, x):
219
- return super().forward(x.float()).type(x.dtype)
220
-
221
- def conv_nd(dims, *args, **kwargs):
222
- """
223
- Create a 1D, 2D, or 3D convolution module.
224
- """
225
- if dims == 1:
226
- return nn.Conv1d(*args, **kwargs)
227
- elif dims == 2:
228
- return nn.Conv2d(*args, **kwargs)
229
- elif dims == 3:
230
- return nn.Conv3d(*args, **kwargs)
231
- raise ValueError(f"unsupported dimensions: {dims}")
232
-
233
-
234
- def linear(*args, **kwargs):
235
- """
236
- Create a linear module.
237
- """
238
- return nn.Linear(*args, **kwargs)
239
-
240
-
241
- def avg_pool_nd(dims, *args, **kwargs):
242
- """
243
- Create a 1D, 2D, or 3D average pooling module.
244
- """
245
- if dims == 1:
246
- return nn.AvgPool1d(*args, **kwargs)
247
- elif dims == 2:
248
- return nn.AvgPool2d(*args, **kwargs)
249
- elif dims == 3:
250
- return nn.AvgPool3d(*args, **kwargs)
251
- raise ValueError(f"unsupported dimensions: {dims}")
252
-
253
-
254
- class HybridConditioner(nn.Module):
255
-
256
- def __init__(self, c_concat_config, c_crossattn_config):
257
- super().__init__()
258
- self.concat_conditioner = instantiate_from_config(c_concat_config)
259
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
260
-
261
- def forward(self, c_concat, c_crossattn):
262
- c_concat = self.concat_conditioner(c_concat)
263
- c_crossattn = self.crossattn_conditioner(c_crossattn)
264
- return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
265
-
266
-
267
- def noise_like(shape, device, repeat=False):
268
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
269
- noise = lambda: torch.randn(shape, device=device)
270
- return repeat_noise() if repeat else noise()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/distributions/__init__.py DELETED
File without changes
ldm/modules/distributions/distributions.py DELETED
@@ -1,92 +0,0 @@
1
- import torch
2
- import numpy as np
3
-
4
-
5
- class AbstractDistribution:
6
- def sample(self):
7
- raise NotImplementedError()
8
-
9
- def mode(self):
10
- raise NotImplementedError()
11
-
12
-
13
- class DiracDistribution(AbstractDistribution):
14
- def __init__(self, value):
15
- self.value = value
16
-
17
- def sample(self):
18
- return self.value
19
-
20
- def mode(self):
21
- return self.value
22
-
23
-
24
- class DiagonalGaussianDistribution(object):
25
- def __init__(self, parameters, deterministic=False):
26
- self.parameters = parameters
27
- self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
- self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
- self.deterministic = deterministic
30
- self.std = torch.exp(0.5 * self.logvar)
31
- self.var = torch.exp(self.logvar)
32
- if self.deterministic:
33
- self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
-
35
- def sample(self):
36
- x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
- return x
38
-
39
- def kl(self, other=None):
40
- if self.deterministic:
41
- return torch.Tensor([0.])
42
- else:
43
- if other is None:
44
- return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
- + self.var - 1.0 - self.logvar,
46
- dim=[1, 2, 3])
47
- else:
48
- return 0.5 * torch.sum(
49
- torch.pow(self.mean - other.mean, 2) / other.var
50
- + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
- dim=[1, 2, 3])
52
-
53
- def nll(self, sample, dims=[1,2,3]):
54
- if self.deterministic:
55
- return torch.Tensor([0.])
56
- logtwopi = np.log(2.0 * np.pi)
57
- return 0.5 * torch.sum(
58
- logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
- dim=dims)
60
-
61
- def mode(self):
62
- return self.mean
63
-
64
-
65
- def normal_kl(mean1, logvar1, mean2, logvar2):
66
- """
67
- source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
- Compute the KL divergence between two gaussians.
69
- Shapes are automatically broadcasted, so batches can be compared to
70
- scalars, among other use cases.
71
- """
72
- tensor = None
73
- for obj in (mean1, logvar1, mean2, logvar2):
74
- if isinstance(obj, torch.Tensor):
75
- tensor = obj
76
- break
77
- assert tensor is not None, "at least one argument must be a Tensor"
78
-
79
- # Force variances to be Tensors. Broadcasting helps convert scalars to
80
- # Tensors, but it does not work for torch.exp().
81
- logvar1, logvar2 = [
82
- x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
- for x in (logvar1, logvar2)
84
- ]
85
-
86
- return 0.5 * (
87
- -1.0
88
- + logvar2
89
- - logvar1
90
- + torch.exp(logvar1 - logvar2)
91
- + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/ema.py DELETED
@@ -1,80 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
-
5
- class LitEma(nn.Module):
6
- def __init__(self, model, decay=0.9999, use_num_upates=True):
7
- super().__init__()
8
- if decay < 0.0 or decay > 1.0:
9
- raise ValueError('Decay must be between 0 and 1')
10
-
11
- self.m_name2s_name = {}
12
- self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
14
- else torch.tensor(-1, dtype=torch.int))
15
-
16
- for name, p in model.named_parameters():
17
- if p.requires_grad:
18
- # remove as '.'-character is not allowed in buffers
19
- s_name = name.replace('.', '')
20
- self.m_name2s_name.update({name: s_name})
21
- self.register_buffer(s_name, p.clone().detach().data)
22
-
23
- self.collected_params = []
24
-
25
- def reset_num_updates(self):
26
- del self.num_updates
27
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
28
-
29
- def forward(self, model):
30
- decay = self.decay
31
-
32
- if self.num_updates >= 0:
33
- self.num_updates += 1
34
- decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
35
-
36
- one_minus_decay = 1.0 - decay
37
-
38
- with torch.no_grad():
39
- m_param = dict(model.named_parameters())
40
- shadow_params = dict(self.named_buffers())
41
-
42
- for key in m_param:
43
- if m_param[key].requires_grad:
44
- sname = self.m_name2s_name[key]
45
- shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
46
- shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
47
- else:
48
- assert not key in self.m_name2s_name
49
-
50
- def copy_to(self, model):
51
- m_param = dict(model.named_parameters())
52
- shadow_params = dict(self.named_buffers())
53
- for key in m_param:
54
- if m_param[key].requires_grad:
55
- m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
56
- else:
57
- assert not key in self.m_name2s_name
58
-
59
- def store(self, parameters):
60
- """
61
- Save the current parameters for restoring later.
62
- Args:
63
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
64
- temporarily stored.
65
- """
66
- self.collected_params = [param.clone() for param in parameters]
67
-
68
- def restore(self, parameters):
69
- """
70
- Restore the parameters stored with the `store` method.
71
- Useful to validate the model with EMA parameters without affecting the
72
- original optimization process. Store the parameters before the
73
- `copy_to` method. After validation (or model saving), use this to
74
- restore the former parameters.
75
- Args:
76
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
77
- updated with the stored parameters.
78
- """
79
- for c_param, param in zip(self.collected_params, parameters):
80
- param.data.copy_(c_param.data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/encoders/__init__.py DELETED
File without changes
ldm/modules/encoders/modules.py DELETED
@@ -1,213 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from torch.utils.checkpoint import checkpoint
4
-
5
- from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
6
-
7
- import open_clip
8
- from ldm.util import default, count_params
9
-
10
-
11
- class AbstractEncoder(nn.Module):
12
- def __init__(self):
13
- super().__init__()
14
-
15
- def encode(self, *args, **kwargs):
16
- raise NotImplementedError
17
-
18
-
19
- class IdentityEncoder(AbstractEncoder):
20
-
21
- def encode(self, x):
22
- return x
23
-
24
-
25
- class ClassEmbedder(nn.Module):
26
- def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
27
- super().__init__()
28
- self.key = key
29
- self.embedding = nn.Embedding(n_classes, embed_dim)
30
- self.n_classes = n_classes
31
- self.ucg_rate = ucg_rate
32
-
33
- def forward(self, batch, key=None, disable_dropout=False):
34
- if key is None:
35
- key = self.key
36
- # this is for use in crossattn
37
- c = batch[key][:, None]
38
- if self.ucg_rate > 0. and not disable_dropout:
39
- mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
40
- c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
41
- c = c.long()
42
- c = self.embedding(c)
43
- return c
44
-
45
- def get_unconditional_conditioning(self, bs, device="cuda"):
46
- uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
47
- uc = torch.ones((bs,), device=device) * uc_class
48
- uc = {self.key: uc}
49
- return uc
50
-
51
-
52
- def disabled_train(self, mode=True):
53
- """Overwrite model.train with this function to make sure train/eval mode
54
- does not change anymore."""
55
- return self
56
-
57
-
58
- class FrozenT5Embedder(AbstractEncoder):
59
- """Uses the T5 transformer encoder for text"""
60
- def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
61
- super().__init__()
62
- self.tokenizer = T5Tokenizer.from_pretrained(version)
63
- self.transformer = T5EncoderModel.from_pretrained(version)
64
- self.device = device
65
- self.max_length = max_length # TODO: typical value?
66
- if freeze:
67
- self.freeze()
68
-
69
- def freeze(self):
70
- self.transformer = self.transformer.eval()
71
- #self.train = disabled_train
72
- for param in self.parameters():
73
- param.requires_grad = False
74
-
75
- def forward(self, text):
76
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
77
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
78
- tokens = batch_encoding["input_ids"].to(self.device)
79
- outputs = self.transformer(input_ids=tokens)
80
-
81
- z = outputs.last_hidden_state
82
- return z
83
-
84
- def encode(self, text):
85
- return self(text)
86
-
87
-
88
- class FrozenCLIPEmbedder(AbstractEncoder):
89
- """Uses the CLIP transformer encoder for text (from huggingface)"""
90
- LAYERS = [
91
- "last",
92
- "pooled",
93
- "hidden"
94
- ]
95
- def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
96
- freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
97
- super().__init__()
98
- assert layer in self.LAYERS
99
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
100
- self.transformer = CLIPTextModel.from_pretrained(version)
101
- self.device = device
102
- self.max_length = max_length
103
- if freeze:
104
- self.freeze()
105
- self.layer = layer
106
- self.layer_idx = layer_idx
107
- if layer == "hidden":
108
- assert layer_idx is not None
109
- assert 0 <= abs(layer_idx) <= 12
110
-
111
- def freeze(self):
112
- self.transformer = self.transformer.eval()
113
- #self.train = disabled_train
114
- for param in self.parameters():
115
- param.requires_grad = False
116
-
117
- def forward(self, text):
118
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
119
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
120
- tokens = batch_encoding["input_ids"].to(self.device)
121
- outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
122
- if self.layer == "last":
123
- z = outputs.last_hidden_state
124
- elif self.layer == "pooled":
125
- z = outputs.pooler_output[:, None, :]
126
- else:
127
- z = outputs.hidden_states[self.layer_idx]
128
- return z
129
-
130
- def encode(self, text):
131
- return self(text)
132
-
133
-
134
- class FrozenOpenCLIPEmbedder(AbstractEncoder):
135
- """
136
- Uses the OpenCLIP transformer encoder for text
137
- """
138
- LAYERS = [
139
- #"pooled",
140
- "last",
141
- "penultimate"
142
- ]
143
- def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
144
- freeze=True, layer="last"):
145
- super().__init__()
146
- assert layer in self.LAYERS
147
- model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
148
- del model.visual
149
- self.model = model
150
-
151
- self.device = device
152
- self.max_length = max_length
153
- if freeze:
154
- self.freeze()
155
- self.layer = layer
156
- if self.layer == "last":
157
- self.layer_idx = 0
158
- elif self.layer == "penultimate":
159
- self.layer_idx = 1
160
- else:
161
- raise NotImplementedError()
162
-
163
- def freeze(self):
164
- self.model = self.model.eval()
165
- for param in self.parameters():
166
- param.requires_grad = False
167
-
168
- def forward(self, text):
169
- tokens = open_clip.tokenize(text)
170
- z = self.encode_with_transformer(tokens.to(self.device))
171
- return z
172
-
173
- def encode_with_transformer(self, text):
174
- x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
175
- x = x + self.model.positional_embedding
176
- x = x.permute(1, 0, 2) # NLD -> LND
177
- x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
178
- x = x.permute(1, 0, 2) # LND -> NLD
179
- x = self.model.ln_final(x)
180
- return x
181
-
182
- def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
183
- for i, r in enumerate(self.model.transformer.resblocks):
184
- if i == len(self.model.transformer.resblocks) - self.layer_idx:
185
- break
186
- if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
187
- x = checkpoint(r, x, attn_mask)
188
- else:
189
- x = r(x, attn_mask=attn_mask)
190
- return x
191
-
192
- def encode(self, text):
193
- return self(text)
194
-
195
-
196
- class FrozenCLIPT5Encoder(AbstractEncoder):
197
- def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
198
- clip_max_length=77, t5_max_length=77):
199
- super().__init__()
200
- self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
201
- self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
202
- print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
203
- f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
204
-
205
- def encode(self, text):
206
- return self(text)
207
-
208
- def forward(self, text):
209
- clip_z = self.clip_encoder.encode(text)
210
- t5_z = self.t5_encoder.encode(text)
211
- return [clip_z, t5_z]
212
-
213
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/image_degradation/__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
2
- from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
 
 
 
ldm/modules/image_degradation/bsrgan.py DELETED
@@ -1,730 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- # --------------------------------------------
4
- # Super-Resolution
5
- # --------------------------------------------
6
- #
7
- # Kai Zhang ([email protected])
8
- # https://github.com/cszn
9
- # From 2019/03--2021/08
10
- # --------------------------------------------
11
- """
12
-
13
- import numpy as np
14
- import cv2
15
- import torch
16
-
17
- from functools import partial
18
- import random
19
- from scipy import ndimage
20
- import scipy
21
- import scipy.stats as ss
22
- from scipy.interpolate import interp2d
23
- from scipy.linalg import orth
24
- import albumentations
25
-
26
- import ldm.modules.image_degradation.utils_image as util
27
-
28
-
29
- def modcrop_np(img, sf):
30
- '''
31
- Args:
32
- img: numpy image, WxH or WxHxC
33
- sf: scale factor
34
- Return:
35
- cropped image
36
- '''
37
- w, h = img.shape[:2]
38
- im = np.copy(img)
39
- return im[:w - w % sf, :h - h % sf, ...]
40
-
41
-
42
- """
43
- # --------------------------------------------
44
- # anisotropic Gaussian kernels
45
- # --------------------------------------------
46
- """
47
-
48
-
49
- def analytic_kernel(k):
50
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
- k_size = k.shape[0]
52
- # Calculate the big kernels size
53
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
- # Loop over the small kernel to fill the big one
55
- for r in range(k_size):
56
- for c in range(k_size):
57
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
- crop = k_size // 2
60
- cropped_big_k = big_k[crop:-crop, crop:-crop]
61
- # Normalize to 1
62
- return cropped_big_k / cropped_big_k.sum()
63
-
64
-
65
- def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
- """ generate an anisotropic Gaussian kernel
67
- Args:
68
- ksize : e.g., 15, kernel size
69
- theta : [0, pi], rotation angle range
70
- l1 : [0.1,50], scaling of eigenvalues
71
- l2 : [0.1,l1], scaling of eigenvalues
72
- If l1 = l2, will get an isotropic Gaussian kernel.
73
- Returns:
74
- k : kernel
75
- """
76
-
77
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
- D = np.array([[l1, 0], [0, l2]])
80
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
-
83
- return k
84
-
85
-
86
- def gm_blur_kernel(mean, cov, size=15):
87
- center = size / 2.0 + 0.5
88
- k = np.zeros([size, size])
89
- for y in range(size):
90
- for x in range(size):
91
- cy = y - center + 1
92
- cx = x - center + 1
93
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
-
95
- k = k / np.sum(k)
96
- return k
97
-
98
-
99
- def shift_pixel(x, sf, upper_left=True):
100
- """shift pixel for super-resolution with different scale factors
101
- Args:
102
- x: WxHxC or WxH
103
- sf: scale factor
104
- upper_left: shift direction
105
- """
106
- h, w = x.shape[:2]
107
- shift = (sf - 1) * 0.5
108
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
- if upper_left:
110
- x1 = xv + shift
111
- y1 = yv + shift
112
- else:
113
- x1 = xv - shift
114
- y1 = yv - shift
115
-
116
- x1 = np.clip(x1, 0, w - 1)
117
- y1 = np.clip(y1, 0, h - 1)
118
-
119
- if x.ndim == 2:
120
- x = interp2d(xv, yv, x)(x1, y1)
121
- if x.ndim == 3:
122
- for i in range(x.shape[-1]):
123
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
-
125
- return x
126
-
127
-
128
- def blur(x, k):
129
- '''
130
- x: image, NxcxHxW
131
- k: kernel, Nx1xhxw
132
- '''
133
- n, c = x.shape[:2]
134
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
- k = k.repeat(1, c, 1, 1)
137
- k = k.view(-1, 1, k.shape[2], k.shape[3])
138
- x = x.view(1, -1, x.shape[2], x.shape[3])
139
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
- x = x.view(n, c, x.shape[2], x.shape[3])
141
-
142
- return x
143
-
144
-
145
- def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
- """"
147
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
- # Kai Zhang
149
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
- # max_var = 2.5 * sf
151
- """
152
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
- theta = np.random.rand() * np.pi # random theta
156
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
-
158
- # Set COV matrix using Lambdas and Theta
159
- LAMBDA = np.diag([lambda_1, lambda_2])
160
- Q = np.array([[np.cos(theta), -np.sin(theta)],
161
- [np.sin(theta), np.cos(theta)]])
162
- SIGMA = Q @ LAMBDA @ Q.T
163
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
-
165
- # Set expectation position (shifting kernel for aligned image)
166
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
- MU = MU[None, None, :, None]
168
-
169
- # Create meshgrid for Gaussian
170
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
- Z = np.stack([X, Y], 2)[:, :, :, None]
172
-
173
- # Calcualte Gaussian for every pixel of the kernel
174
- ZZ = Z - MU
175
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
-
178
- # shift the kernel so it will be centered
179
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
-
181
- # Normalize the kernel and return
182
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
- kernel = raw_kernel / np.sum(raw_kernel)
184
- return kernel
185
-
186
-
187
- def fspecial_gaussian(hsize, sigma):
188
- hsize = [hsize, hsize]
189
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
- std = sigma
191
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
- arg = -(x * x + y * y) / (2 * std * std)
193
- h = np.exp(arg)
194
- h[h < scipy.finfo(float).eps * h.max()] = 0
195
- sumh = h.sum()
196
- if sumh != 0:
197
- h = h / sumh
198
- return h
199
-
200
-
201
- def fspecial_laplacian(alpha):
202
- alpha = max([0, min([alpha, 1])])
203
- h1 = alpha / (alpha + 1)
204
- h2 = (1 - alpha) / (alpha + 1)
205
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
- h = np.array(h)
207
- return h
208
-
209
-
210
- def fspecial(filter_type, *args, **kwargs):
211
- '''
212
- python code from:
213
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
- '''
215
- if filter_type == 'gaussian':
216
- return fspecial_gaussian(*args, **kwargs)
217
- if filter_type == 'laplacian':
218
- return fspecial_laplacian(*args, **kwargs)
219
-
220
-
221
- """
222
- # --------------------------------------------
223
- # degradation models
224
- # --------------------------------------------
225
- """
226
-
227
-
228
- def bicubic_degradation(x, sf=3):
229
- '''
230
- Args:
231
- x: HxWxC image, [0, 1]
232
- sf: down-scale factor
233
- Return:
234
- bicubicly downsampled LR image
235
- '''
236
- x = util.imresize_np(x, scale=1 / sf)
237
- return x
238
-
239
-
240
- def srmd_degradation(x, k, sf=3):
241
- ''' blur + bicubic downsampling
242
- Args:
243
- x: HxWxC image, [0, 1]
244
- k: hxw, double
245
- sf: down-scale factor
246
- Return:
247
- downsampled LR image
248
- Reference:
249
- @inproceedings{zhang2018learning,
250
- title={Learning a single convolutional super-resolution network for multiple degradations},
251
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
- pages={3262--3271},
254
- year={2018}
255
- }
256
- '''
257
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
- x = bicubic_degradation(x, sf=sf)
259
- return x
260
-
261
-
262
- def dpsr_degradation(x, k, sf=3):
263
- ''' bicubic downsampling + blur
264
- Args:
265
- x: HxWxC image, [0, 1]
266
- k: hxw, double
267
- sf: down-scale factor
268
- Return:
269
- downsampled LR image
270
- Reference:
271
- @inproceedings{zhang2019deep,
272
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
- pages={1671--1681},
276
- year={2019}
277
- }
278
- '''
279
- x = bicubic_degradation(x, sf=sf)
280
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
- return x
282
-
283
-
284
- def classical_degradation(x, k, sf=3):
285
- ''' blur + downsampling
286
- Args:
287
- x: HxWxC image, [0, 1]/[0, 255]
288
- k: hxw, double
289
- sf: down-scale factor
290
- Return:
291
- downsampled LR image
292
- '''
293
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
- st = 0
296
- return x[st::sf, st::sf, ...]
297
-
298
-
299
- def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
- """USM sharpening. borrowed from real-ESRGAN
301
- Input image: I; Blurry image: B.
302
- 1. K = I + weight * (I - B)
303
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
- 3. Blur mask:
305
- 4. Out = Mask * K + (1 - Mask) * I
306
- Args:
307
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
- weight (float): Sharp weight. Default: 1.
309
- radius (float): Kernel size of Gaussian blur. Default: 50.
310
- threshold (int):
311
- """
312
- if radius % 2 == 0:
313
- radius += 1
314
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
- residual = img - blur
316
- mask = np.abs(residual) * 255 > threshold
317
- mask = mask.astype('float32')
318
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
-
320
- K = img + weight * residual
321
- K = np.clip(K, 0, 1)
322
- return soft_mask * K + (1 - soft_mask) * img
323
-
324
-
325
- def add_blur(img, sf=4):
326
- wd2 = 4.0 + sf
327
- wd = 2.0 + 0.2 * sf
328
- if random.random() < 0.5:
329
- l1 = wd2 * random.random()
330
- l2 = wd2 * random.random()
331
- k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
332
- else:
333
- k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
334
- img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
335
-
336
- return img
337
-
338
-
339
- def add_resize(img, sf=4):
340
- rnum = np.random.rand()
341
- if rnum > 0.8: # up
342
- sf1 = random.uniform(1, 2)
343
- elif rnum < 0.7: # down
344
- sf1 = random.uniform(0.5 / sf, 1)
345
- else:
346
- sf1 = 1.0
347
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
348
- img = np.clip(img, 0.0, 1.0)
349
-
350
- return img
351
-
352
-
353
- # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
354
- # noise_level = random.randint(noise_level1, noise_level2)
355
- # rnum = np.random.rand()
356
- # if rnum > 0.6: # add color Gaussian noise
357
- # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
358
- # elif rnum < 0.4: # add grayscale Gaussian noise
359
- # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
360
- # else: # add noise
361
- # L = noise_level2 / 255.
362
- # D = np.diag(np.random.rand(3))
363
- # U = orth(np.random.rand(3, 3))
364
- # conv = np.dot(np.dot(np.transpose(U), D), U)
365
- # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
366
- # img = np.clip(img, 0.0, 1.0)
367
- # return img
368
-
369
- def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
370
- noise_level = random.randint(noise_level1, noise_level2)
371
- rnum = np.random.rand()
372
- if rnum > 0.6: # add color Gaussian noise
373
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
374
- elif rnum < 0.4: # add grayscale Gaussian noise
375
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
376
- else: # add noise
377
- L = noise_level2 / 255.
378
- D = np.diag(np.random.rand(3))
379
- U = orth(np.random.rand(3, 3))
380
- conv = np.dot(np.dot(np.transpose(U), D), U)
381
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
382
- img = np.clip(img, 0.0, 1.0)
383
- return img
384
-
385
-
386
- def add_speckle_noise(img, noise_level1=2, noise_level2=25):
387
- noise_level = random.randint(noise_level1, noise_level2)
388
- img = np.clip(img, 0.0, 1.0)
389
- rnum = random.random()
390
- if rnum > 0.6:
391
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
392
- elif rnum < 0.4:
393
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
394
- else:
395
- L = noise_level2 / 255.
396
- D = np.diag(np.random.rand(3))
397
- U = orth(np.random.rand(3, 3))
398
- conv = np.dot(np.dot(np.transpose(U), D), U)
399
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
400
- img = np.clip(img, 0.0, 1.0)
401
- return img
402
-
403
-
404
- def add_Poisson_noise(img):
405
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
406
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
407
- if random.random() < 0.5:
408
- img = np.random.poisson(img * vals).astype(np.float32) / vals
409
- else:
410
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
411
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
412
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
413
- img += noise_gray[:, :, np.newaxis]
414
- img = np.clip(img, 0.0, 1.0)
415
- return img
416
-
417
-
418
- def add_JPEG_noise(img):
419
- quality_factor = random.randint(30, 95)
420
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
421
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
422
- img = cv2.imdecode(encimg, 1)
423
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
424
- return img
425
-
426
-
427
- def random_crop(lq, hq, sf=4, lq_patchsize=64):
428
- h, w = lq.shape[:2]
429
- rnd_h = random.randint(0, h - lq_patchsize)
430
- rnd_w = random.randint(0, w - lq_patchsize)
431
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
432
-
433
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
434
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
435
- return lq, hq
436
-
437
-
438
- def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
439
- """
440
- This is the degradation model of BSRGAN from the paper
441
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
442
- ----------
443
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
444
- sf: scale factor
445
- isp_model: camera ISP model
446
- Returns
447
- -------
448
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
449
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
450
- """
451
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
452
- sf_ori = sf
453
-
454
- h1, w1 = img.shape[:2]
455
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
456
- h, w = img.shape[:2]
457
-
458
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
459
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
460
-
461
- hq = img.copy()
462
-
463
- if sf == 4 and random.random() < scale2_prob: # downsample1
464
- if np.random.rand() < 0.5:
465
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
466
- interpolation=random.choice([1, 2, 3]))
467
- else:
468
- img = util.imresize_np(img, 1 / 2, True)
469
- img = np.clip(img, 0.0, 1.0)
470
- sf = 2
471
-
472
- shuffle_order = random.sample(range(7), 7)
473
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
474
- if idx1 > idx2: # keep downsample3 last
475
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
476
-
477
- for i in shuffle_order:
478
-
479
- if i == 0:
480
- img = add_blur(img, sf=sf)
481
-
482
- elif i == 1:
483
- img = add_blur(img, sf=sf)
484
-
485
- elif i == 2:
486
- a, b = img.shape[1], img.shape[0]
487
- # downsample2
488
- if random.random() < 0.75:
489
- sf1 = random.uniform(1, 2 * sf)
490
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
491
- interpolation=random.choice([1, 2, 3]))
492
- else:
493
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
494
- k_shifted = shift_pixel(k, sf)
495
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
496
- img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
497
- img = img[0::sf, 0::sf, ...] # nearest downsampling
498
- img = np.clip(img, 0.0, 1.0)
499
-
500
- elif i == 3:
501
- # downsample3
502
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
503
- img = np.clip(img, 0.0, 1.0)
504
-
505
- elif i == 4:
506
- # add Gaussian noise
507
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
508
-
509
- elif i == 5:
510
- # add JPEG noise
511
- if random.random() < jpeg_prob:
512
- img = add_JPEG_noise(img)
513
-
514
- elif i == 6:
515
- # add processed camera sensor noise
516
- if random.random() < isp_prob and isp_model is not None:
517
- with torch.no_grad():
518
- img, hq = isp_model.forward(img.copy(), hq)
519
-
520
- # add final JPEG compression noise
521
- img = add_JPEG_noise(img)
522
-
523
- # random crop
524
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
525
-
526
- return img, hq
527
-
528
-
529
- # todo no isp_model?
530
- def degradation_bsrgan_variant(image, sf=4, isp_model=None):
531
- """
532
- This is the degradation model of BSRGAN from the paper
533
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
534
- ----------
535
- sf: scale factor
536
- isp_model: camera ISP model
537
- Returns
538
- -------
539
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
540
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
541
- """
542
- image = util.uint2single(image)
543
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
544
- sf_ori = sf
545
-
546
- h1, w1 = image.shape[:2]
547
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
548
- h, w = image.shape[:2]
549
-
550
- hq = image.copy()
551
-
552
- if sf == 4 and random.random() < scale2_prob: # downsample1
553
- if np.random.rand() < 0.5:
554
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
555
- interpolation=random.choice([1, 2, 3]))
556
- else:
557
- image = util.imresize_np(image, 1 / 2, True)
558
- image = np.clip(image, 0.0, 1.0)
559
- sf = 2
560
-
561
- shuffle_order = random.sample(range(7), 7)
562
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
563
- if idx1 > idx2: # keep downsample3 last
564
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
565
-
566
- for i in shuffle_order:
567
-
568
- if i == 0:
569
- image = add_blur(image, sf=sf)
570
-
571
- elif i == 1:
572
- image = add_blur(image, sf=sf)
573
-
574
- elif i == 2:
575
- a, b = image.shape[1], image.shape[0]
576
- # downsample2
577
- if random.random() < 0.75:
578
- sf1 = random.uniform(1, 2 * sf)
579
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
580
- interpolation=random.choice([1, 2, 3]))
581
- else:
582
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
583
- k_shifted = shift_pixel(k, sf)
584
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
585
- image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
586
- image = image[0::sf, 0::sf, ...] # nearest downsampling
587
- image = np.clip(image, 0.0, 1.0)
588
-
589
- elif i == 3:
590
- # downsample3
591
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
592
- image = np.clip(image, 0.0, 1.0)
593
-
594
- elif i == 4:
595
- # add Gaussian noise
596
- image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
597
-
598
- elif i == 5:
599
- # add JPEG noise
600
- if random.random() < jpeg_prob:
601
- image = add_JPEG_noise(image)
602
-
603
- # elif i == 6:
604
- # # add processed camera sensor noise
605
- # if random.random() < isp_prob and isp_model is not None:
606
- # with torch.no_grad():
607
- # img, hq = isp_model.forward(img.copy(), hq)
608
-
609
- # add final JPEG compression noise
610
- image = add_JPEG_noise(image)
611
- image = util.single2uint(image)
612
- example = {"image":image}
613
- return example
614
-
615
-
616
- # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
617
- def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
618
- """
619
- This is an extended degradation model by combining
620
- the degradation models of BSRGAN and Real-ESRGAN
621
- ----------
622
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
623
- sf: scale factor
624
- use_shuffle: the degradation shuffle
625
- use_sharp: sharpening the img
626
- Returns
627
- -------
628
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
629
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
630
- """
631
-
632
- h1, w1 = img.shape[:2]
633
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
634
- h, w = img.shape[:2]
635
-
636
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
637
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
638
-
639
- if use_sharp:
640
- img = add_sharpening(img)
641
- hq = img.copy()
642
-
643
- if random.random() < shuffle_prob:
644
- shuffle_order = random.sample(range(13), 13)
645
- else:
646
- shuffle_order = list(range(13))
647
- # local shuffle for noise, JPEG is always the last one
648
- shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
649
- shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
650
-
651
- poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
652
-
653
- for i in shuffle_order:
654
- if i == 0:
655
- img = add_blur(img, sf=sf)
656
- elif i == 1:
657
- img = add_resize(img, sf=sf)
658
- elif i == 2:
659
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
660
- elif i == 3:
661
- if random.random() < poisson_prob:
662
- img = add_Poisson_noise(img)
663
- elif i == 4:
664
- if random.random() < speckle_prob:
665
- img = add_speckle_noise(img)
666
- elif i == 5:
667
- if random.random() < isp_prob and isp_model is not None:
668
- with torch.no_grad():
669
- img, hq = isp_model.forward(img.copy(), hq)
670
- elif i == 6:
671
- img = add_JPEG_noise(img)
672
- elif i == 7:
673
- img = add_blur(img, sf=sf)
674
- elif i == 8:
675
- img = add_resize(img, sf=sf)
676
- elif i == 9:
677
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
678
- elif i == 10:
679
- if random.random() < poisson_prob:
680
- img = add_Poisson_noise(img)
681
- elif i == 11:
682
- if random.random() < speckle_prob:
683
- img = add_speckle_noise(img)
684
- elif i == 12:
685
- if random.random() < isp_prob and isp_model is not None:
686
- with torch.no_grad():
687
- img, hq = isp_model.forward(img.copy(), hq)
688
- else:
689
- print('check the shuffle!')
690
-
691
- # resize to desired size
692
- img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
693
- interpolation=random.choice([1, 2, 3]))
694
-
695
- # add final JPEG compression noise
696
- img = add_JPEG_noise(img)
697
-
698
- # random crop
699
- img, hq = random_crop(img, hq, sf, lq_patchsize)
700
-
701
- return img, hq
702
-
703
-
704
- if __name__ == '__main__':
705
- print("hey")
706
- img = util.imread_uint('utils/test.png', 3)
707
- print(img)
708
- img = util.uint2single(img)
709
- print(img)
710
- img = img[:448, :448]
711
- h = img.shape[0] // 4
712
- print("resizing to", h)
713
- sf = 4
714
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
715
- for i in range(20):
716
- print(i)
717
- img_lq = deg_fn(img)
718
- print(img_lq)
719
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
720
- print(img_lq.shape)
721
- print("bicubic", img_lq_bicubic.shape)
722
- print(img_hq.shape)
723
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
724
- interpolation=0)
725
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
726
- interpolation=0)
727
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
728
- util.imsave(img_concat, str(i) + '.png')
729
-
730
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/image_degradation/bsrgan_light.py DELETED
@@ -1,651 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- import numpy as np
3
- import cv2
4
- import torch
5
-
6
- from functools import partial
7
- import random
8
- from scipy import ndimage
9
- import scipy
10
- import scipy.stats as ss
11
- from scipy.interpolate import interp2d
12
- from scipy.linalg import orth
13
- import albumentations
14
-
15
- import ldm.modules.image_degradation.utils_image as util
16
-
17
- """
18
- # --------------------------------------------
19
- # Super-Resolution
20
- # --------------------------------------------
21
- #
22
- # Kai Zhang ([email protected])
23
- # https://github.com/cszn
24
- # From 2019/03--2021/08
25
- # --------------------------------------------
26
- """
27
-
28
- def modcrop_np(img, sf):
29
- '''
30
- Args:
31
- img: numpy image, WxH or WxHxC
32
- sf: scale factor
33
- Return:
34
- cropped image
35
- '''
36
- w, h = img.shape[:2]
37
- im = np.copy(img)
38
- return im[:w - w % sf, :h - h % sf, ...]
39
-
40
-
41
- """
42
- # --------------------------------------------
43
- # anisotropic Gaussian kernels
44
- # --------------------------------------------
45
- """
46
-
47
-
48
- def analytic_kernel(k):
49
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
50
- k_size = k.shape[0]
51
- # Calculate the big kernels size
52
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
53
- # Loop over the small kernel to fill the big one
54
- for r in range(k_size):
55
- for c in range(k_size):
56
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
57
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
58
- crop = k_size // 2
59
- cropped_big_k = big_k[crop:-crop, crop:-crop]
60
- # Normalize to 1
61
- return cropped_big_k / cropped_big_k.sum()
62
-
63
-
64
- def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
65
- """ generate an anisotropic Gaussian kernel
66
- Args:
67
- ksize : e.g., 15, kernel size
68
- theta : [0, pi], rotation angle range
69
- l1 : [0.1,50], scaling of eigenvalues
70
- l2 : [0.1,l1], scaling of eigenvalues
71
- If l1 = l2, will get an isotropic Gaussian kernel.
72
- Returns:
73
- k : kernel
74
- """
75
-
76
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
77
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
78
- D = np.array([[l1, 0], [0, l2]])
79
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
80
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
81
-
82
- return k
83
-
84
-
85
- def gm_blur_kernel(mean, cov, size=15):
86
- center = size / 2.0 + 0.5
87
- k = np.zeros([size, size])
88
- for y in range(size):
89
- for x in range(size):
90
- cy = y - center + 1
91
- cx = x - center + 1
92
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
93
-
94
- k = k / np.sum(k)
95
- return k
96
-
97
-
98
- def shift_pixel(x, sf, upper_left=True):
99
- """shift pixel for super-resolution with different scale factors
100
- Args:
101
- x: WxHxC or WxH
102
- sf: scale factor
103
- upper_left: shift direction
104
- """
105
- h, w = x.shape[:2]
106
- shift = (sf - 1) * 0.5
107
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
108
- if upper_left:
109
- x1 = xv + shift
110
- y1 = yv + shift
111
- else:
112
- x1 = xv - shift
113
- y1 = yv - shift
114
-
115
- x1 = np.clip(x1, 0, w - 1)
116
- y1 = np.clip(y1, 0, h - 1)
117
-
118
- if x.ndim == 2:
119
- x = interp2d(xv, yv, x)(x1, y1)
120
- if x.ndim == 3:
121
- for i in range(x.shape[-1]):
122
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
123
-
124
- return x
125
-
126
-
127
- def blur(x, k):
128
- '''
129
- x: image, NxcxHxW
130
- k: kernel, Nx1xhxw
131
- '''
132
- n, c = x.shape[:2]
133
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
134
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
135
- k = k.repeat(1, c, 1, 1)
136
- k = k.view(-1, 1, k.shape[2], k.shape[3])
137
- x = x.view(1, -1, x.shape[2], x.shape[3])
138
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
139
- x = x.view(n, c, x.shape[2], x.shape[3])
140
-
141
- return x
142
-
143
-
144
- def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
145
- """"
146
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
147
- # Kai Zhang
148
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
149
- # max_var = 2.5 * sf
150
- """
151
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
152
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
153
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
154
- theta = np.random.rand() * np.pi # random theta
155
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
156
-
157
- # Set COV matrix using Lambdas and Theta
158
- LAMBDA = np.diag([lambda_1, lambda_2])
159
- Q = np.array([[np.cos(theta), -np.sin(theta)],
160
- [np.sin(theta), np.cos(theta)]])
161
- SIGMA = Q @ LAMBDA @ Q.T
162
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
163
-
164
- # Set expectation position (shifting kernel for aligned image)
165
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
166
- MU = MU[None, None, :, None]
167
-
168
- # Create meshgrid for Gaussian
169
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
170
- Z = np.stack([X, Y], 2)[:, :, :, None]
171
-
172
- # Calcualte Gaussian for every pixel of the kernel
173
- ZZ = Z - MU
174
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
175
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
176
-
177
- # shift the kernel so it will be centered
178
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
179
-
180
- # Normalize the kernel and return
181
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
182
- kernel = raw_kernel / np.sum(raw_kernel)
183
- return kernel
184
-
185
-
186
- def fspecial_gaussian(hsize, sigma):
187
- hsize = [hsize, hsize]
188
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
189
- std = sigma
190
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
191
- arg = -(x * x + y * y) / (2 * std * std)
192
- h = np.exp(arg)
193
- h[h < scipy.finfo(float).eps * h.max()] = 0
194
- sumh = h.sum()
195
- if sumh != 0:
196
- h = h / sumh
197
- return h
198
-
199
-
200
- def fspecial_laplacian(alpha):
201
- alpha = max([0, min([alpha, 1])])
202
- h1 = alpha / (alpha + 1)
203
- h2 = (1 - alpha) / (alpha + 1)
204
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
205
- h = np.array(h)
206
- return h
207
-
208
-
209
- def fspecial(filter_type, *args, **kwargs):
210
- '''
211
- python code from:
212
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
213
- '''
214
- if filter_type == 'gaussian':
215
- return fspecial_gaussian(*args, **kwargs)
216
- if filter_type == 'laplacian':
217
- return fspecial_laplacian(*args, **kwargs)
218
-
219
-
220
- """
221
- # --------------------------------------------
222
- # degradation models
223
- # --------------------------------------------
224
- """
225
-
226
-
227
- def bicubic_degradation(x, sf=3):
228
- '''
229
- Args:
230
- x: HxWxC image, [0, 1]
231
- sf: down-scale factor
232
- Return:
233
- bicubicly downsampled LR image
234
- '''
235
- x = util.imresize_np(x, scale=1 / sf)
236
- return x
237
-
238
-
239
- def srmd_degradation(x, k, sf=3):
240
- ''' blur + bicubic downsampling
241
- Args:
242
- x: HxWxC image, [0, 1]
243
- k: hxw, double
244
- sf: down-scale factor
245
- Return:
246
- downsampled LR image
247
- Reference:
248
- @inproceedings{zhang2018learning,
249
- title={Learning a single convolutional super-resolution network for multiple degradations},
250
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
251
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
252
- pages={3262--3271},
253
- year={2018}
254
- }
255
- '''
256
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
257
- x = bicubic_degradation(x, sf=sf)
258
- return x
259
-
260
-
261
- def dpsr_degradation(x, k, sf=3):
262
- ''' bicubic downsampling + blur
263
- Args:
264
- x: HxWxC image, [0, 1]
265
- k: hxw, double
266
- sf: down-scale factor
267
- Return:
268
- downsampled LR image
269
- Reference:
270
- @inproceedings{zhang2019deep,
271
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
272
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
273
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
274
- pages={1671--1681},
275
- year={2019}
276
- }
277
- '''
278
- x = bicubic_degradation(x, sf=sf)
279
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
280
- return x
281
-
282
-
283
- def classical_degradation(x, k, sf=3):
284
- ''' blur + downsampling
285
- Args:
286
- x: HxWxC image, [0, 1]/[0, 255]
287
- k: hxw, double
288
- sf: down-scale factor
289
- Return:
290
- downsampled LR image
291
- '''
292
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
293
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
294
- st = 0
295
- return x[st::sf, st::sf, ...]
296
-
297
-
298
- def add_sharpening(img, weight=0.5, radius=50, threshold=10):
299
- """USM sharpening. borrowed from real-ESRGAN
300
- Input image: I; Blurry image: B.
301
- 1. K = I + weight * (I - B)
302
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
303
- 3. Blur mask:
304
- 4. Out = Mask * K + (1 - Mask) * I
305
- Args:
306
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
307
- weight (float): Sharp weight. Default: 1.
308
- radius (float): Kernel size of Gaussian blur. Default: 50.
309
- threshold (int):
310
- """
311
- if radius % 2 == 0:
312
- radius += 1
313
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
314
- residual = img - blur
315
- mask = np.abs(residual) * 255 > threshold
316
- mask = mask.astype('float32')
317
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
318
-
319
- K = img + weight * residual
320
- K = np.clip(K, 0, 1)
321
- return soft_mask * K + (1 - soft_mask) * img
322
-
323
-
324
- def add_blur(img, sf=4):
325
- wd2 = 4.0 + sf
326
- wd = 2.0 + 0.2 * sf
327
-
328
- wd2 = wd2/4
329
- wd = wd/4
330
-
331
- if random.random() < 0.5:
332
- l1 = wd2 * random.random()
333
- l2 = wd2 * random.random()
334
- k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
335
- else:
336
- k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
337
- img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
338
-
339
- return img
340
-
341
-
342
- def add_resize(img, sf=4):
343
- rnum = np.random.rand()
344
- if rnum > 0.8: # up
345
- sf1 = random.uniform(1, 2)
346
- elif rnum < 0.7: # down
347
- sf1 = random.uniform(0.5 / sf, 1)
348
- else:
349
- sf1 = 1.0
350
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
351
- img = np.clip(img, 0.0, 1.0)
352
-
353
- return img
354
-
355
-
356
- # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
357
- # noise_level = random.randint(noise_level1, noise_level2)
358
- # rnum = np.random.rand()
359
- # if rnum > 0.6: # add color Gaussian noise
360
- # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
361
- # elif rnum < 0.4: # add grayscale Gaussian noise
362
- # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
363
- # else: # add noise
364
- # L = noise_level2 / 255.
365
- # D = np.diag(np.random.rand(3))
366
- # U = orth(np.random.rand(3, 3))
367
- # conv = np.dot(np.dot(np.transpose(U), D), U)
368
- # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
369
- # img = np.clip(img, 0.0, 1.0)
370
- # return img
371
-
372
- def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
373
- noise_level = random.randint(noise_level1, noise_level2)
374
- rnum = np.random.rand()
375
- if rnum > 0.6: # add color Gaussian noise
376
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
377
- elif rnum < 0.4: # add grayscale Gaussian noise
378
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
379
- else: # add noise
380
- L = noise_level2 / 255.
381
- D = np.diag(np.random.rand(3))
382
- U = orth(np.random.rand(3, 3))
383
- conv = np.dot(np.dot(np.transpose(U), D), U)
384
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
385
- img = np.clip(img, 0.0, 1.0)
386
- return img
387
-
388
-
389
- def add_speckle_noise(img, noise_level1=2, noise_level2=25):
390
- noise_level = random.randint(noise_level1, noise_level2)
391
- img = np.clip(img, 0.0, 1.0)
392
- rnum = random.random()
393
- if rnum > 0.6:
394
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
395
- elif rnum < 0.4:
396
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
397
- else:
398
- L = noise_level2 / 255.
399
- D = np.diag(np.random.rand(3))
400
- U = orth(np.random.rand(3, 3))
401
- conv = np.dot(np.dot(np.transpose(U), D), U)
402
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
403
- img = np.clip(img, 0.0, 1.0)
404
- return img
405
-
406
-
407
- def add_Poisson_noise(img):
408
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
409
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
410
- if random.random() < 0.5:
411
- img = np.random.poisson(img * vals).astype(np.float32) / vals
412
- else:
413
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
414
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
415
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
416
- img += noise_gray[:, :, np.newaxis]
417
- img = np.clip(img, 0.0, 1.0)
418
- return img
419
-
420
-
421
- def add_JPEG_noise(img):
422
- quality_factor = random.randint(80, 95)
423
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
424
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
425
- img = cv2.imdecode(encimg, 1)
426
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
427
- return img
428
-
429
-
430
- def random_crop(lq, hq, sf=4, lq_patchsize=64):
431
- h, w = lq.shape[:2]
432
- rnd_h = random.randint(0, h - lq_patchsize)
433
- rnd_w = random.randint(0, w - lq_patchsize)
434
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
435
-
436
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
437
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
438
- return lq, hq
439
-
440
-
441
- def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
442
- """
443
- This is the degradation model of BSRGAN from the paper
444
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
445
- ----------
446
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
447
- sf: scale factor
448
- isp_model: camera ISP model
449
- Returns
450
- -------
451
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
452
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
453
- """
454
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
455
- sf_ori = sf
456
-
457
- h1, w1 = img.shape[:2]
458
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
459
- h, w = img.shape[:2]
460
-
461
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
462
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
463
-
464
- hq = img.copy()
465
-
466
- if sf == 4 and random.random() < scale2_prob: # downsample1
467
- if np.random.rand() < 0.5:
468
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
469
- interpolation=random.choice([1, 2, 3]))
470
- else:
471
- img = util.imresize_np(img, 1 / 2, True)
472
- img = np.clip(img, 0.0, 1.0)
473
- sf = 2
474
-
475
- shuffle_order = random.sample(range(7), 7)
476
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
477
- if idx1 > idx2: # keep downsample3 last
478
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
479
-
480
- for i in shuffle_order:
481
-
482
- if i == 0:
483
- img = add_blur(img, sf=sf)
484
-
485
- elif i == 1:
486
- img = add_blur(img, sf=sf)
487
-
488
- elif i == 2:
489
- a, b = img.shape[1], img.shape[0]
490
- # downsample2
491
- if random.random() < 0.75:
492
- sf1 = random.uniform(1, 2 * sf)
493
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
494
- interpolation=random.choice([1, 2, 3]))
495
- else:
496
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
497
- k_shifted = shift_pixel(k, sf)
498
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
499
- img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
500
- img = img[0::sf, 0::sf, ...] # nearest downsampling
501
- img = np.clip(img, 0.0, 1.0)
502
-
503
- elif i == 3:
504
- # downsample3
505
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
506
- img = np.clip(img, 0.0, 1.0)
507
-
508
- elif i == 4:
509
- # add Gaussian noise
510
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
511
-
512
- elif i == 5:
513
- # add JPEG noise
514
- if random.random() < jpeg_prob:
515
- img = add_JPEG_noise(img)
516
-
517
- elif i == 6:
518
- # add processed camera sensor noise
519
- if random.random() < isp_prob and isp_model is not None:
520
- with torch.no_grad():
521
- img, hq = isp_model.forward(img.copy(), hq)
522
-
523
- # add final JPEG compression noise
524
- img = add_JPEG_noise(img)
525
-
526
- # random crop
527
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
528
-
529
- return img, hq
530
-
531
-
532
- # todo no isp_model?
533
- def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
534
- """
535
- This is the degradation model of BSRGAN from the paper
536
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
537
- ----------
538
- sf: scale factor
539
- isp_model: camera ISP model
540
- Returns
541
- -------
542
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
543
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
544
- """
545
- image = util.uint2single(image)
546
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
547
- sf_ori = sf
548
-
549
- h1, w1 = image.shape[:2]
550
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
551
- h, w = image.shape[:2]
552
-
553
- hq = image.copy()
554
-
555
- if sf == 4 and random.random() < scale2_prob: # downsample1
556
- if np.random.rand() < 0.5:
557
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
558
- interpolation=random.choice([1, 2, 3]))
559
- else:
560
- image = util.imresize_np(image, 1 / 2, True)
561
- image = np.clip(image, 0.0, 1.0)
562
- sf = 2
563
-
564
- shuffle_order = random.sample(range(7), 7)
565
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
566
- if idx1 > idx2: # keep downsample3 last
567
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
568
-
569
- for i in shuffle_order:
570
-
571
- if i == 0:
572
- image = add_blur(image, sf=sf)
573
-
574
- # elif i == 1:
575
- # image = add_blur(image, sf=sf)
576
-
577
- if i == 0:
578
- pass
579
-
580
- elif i == 2:
581
- a, b = image.shape[1], image.shape[0]
582
- # downsample2
583
- if random.random() < 0.8:
584
- sf1 = random.uniform(1, 2 * sf)
585
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
586
- interpolation=random.choice([1, 2, 3]))
587
- else:
588
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
589
- k_shifted = shift_pixel(k, sf)
590
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
591
- image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
592
- image = image[0::sf, 0::sf, ...] # nearest downsampling
593
-
594
- image = np.clip(image, 0.0, 1.0)
595
-
596
- elif i == 3:
597
- # downsample3
598
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
599
- image = np.clip(image, 0.0, 1.0)
600
-
601
- elif i == 4:
602
- # add Gaussian noise
603
- image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
604
-
605
- elif i == 5:
606
- # add JPEG noise
607
- if random.random() < jpeg_prob:
608
- image = add_JPEG_noise(image)
609
- #
610
- # elif i == 6:
611
- # # add processed camera sensor noise
612
- # if random.random() < isp_prob and isp_model is not None:
613
- # with torch.no_grad():
614
- # img, hq = isp_model.forward(img.copy(), hq)
615
-
616
- # add final JPEG compression noise
617
- image = add_JPEG_noise(image)
618
- image = util.single2uint(image)
619
- if up:
620
- image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
621
- example = {"image": image}
622
- return example
623
-
624
-
625
-
626
-
627
- if __name__ == '__main__':
628
- print("hey")
629
- img = util.imread_uint('utils/test.png', 3)
630
- img = img[:448, :448]
631
- h = img.shape[0] // 4
632
- print("resizing to", h)
633
- sf = 4
634
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
635
- for i in range(20):
636
- print(i)
637
- img_hq = img
638
- img_lq = deg_fn(img)["image"]
639
- img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
640
- print(img_lq)
641
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
642
- print(img_lq.shape)
643
- print("bicubic", img_lq_bicubic.shape)
644
- print(img_hq.shape)
645
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
646
- interpolation=0)
647
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
648
- (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
649
- interpolation=0)
650
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
651
- util.imsave(img_concat, str(i) + '.png')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/image_degradation/utils/test.png DELETED
Binary file (441 kB)
 
ldm/modules/image_degradation/utils_image.py DELETED
@@ -1,916 +0,0 @@
1
- import os
2
- import math
3
- import random
4
- import numpy as np
5
- import torch
6
- import cv2
7
- from torchvision.utils import make_grid
8
- from datetime import datetime
9
- #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
10
-
11
-
12
- os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13
-
14
-
15
- '''
16
- # --------------------------------------------
17
- # Kai Zhang (github: https://github.com/cszn)
18
- # 03/Mar/2019
19
- # --------------------------------------------
20
- # https://github.com/twhui/SRGAN-pyTorch
21
- # https://github.com/xinntao/BasicSR
22
- # --------------------------------------------
23
- '''
24
-
25
-
26
- IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
27
-
28
-
29
- def is_image_file(filename):
30
- return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31
-
32
-
33
- def get_timestamp():
34
- return datetime.now().strftime('%y%m%d-%H%M%S')
35
-
36
-
37
- def imshow(x, title=None, cbar=False, figsize=None):
38
- plt.figure(figsize=figsize)
39
- plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
40
- if title:
41
- plt.title(title)
42
- if cbar:
43
- plt.colorbar()
44
- plt.show()
45
-
46
-
47
- def surf(Z, cmap='rainbow', figsize=None):
48
- plt.figure(figsize=figsize)
49
- ax3 = plt.axes(projection='3d')
50
-
51
- w, h = Z.shape[:2]
52
- xx = np.arange(0,w,1)
53
- yy = np.arange(0,h,1)
54
- X, Y = np.meshgrid(xx, yy)
55
- ax3.plot_surface(X,Y,Z,cmap=cmap)
56
- #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
57
- plt.show()
58
-
59
-
60
- '''
61
- # --------------------------------------------
62
- # get image pathes
63
- # --------------------------------------------
64
- '''
65
-
66
-
67
- def get_image_paths(dataroot):
68
- paths = None # return None if dataroot is None
69
- if dataroot is not None:
70
- paths = sorted(_get_paths_from_images(dataroot))
71
- return paths
72
-
73
-
74
- def _get_paths_from_images(path):
75
- assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
76
- images = []
77
- for dirpath, _, fnames in sorted(os.walk(path)):
78
- for fname in sorted(fnames):
79
- if is_image_file(fname):
80
- img_path = os.path.join(dirpath, fname)
81
- images.append(img_path)
82
- assert images, '{:s} has no valid image file'.format(path)
83
- return images
84
-
85
-
86
- '''
87
- # --------------------------------------------
88
- # split large images into small images
89
- # --------------------------------------------
90
- '''
91
-
92
-
93
- def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
94
- w, h = img.shape[:2]
95
- patches = []
96
- if w > p_max and h > p_max:
97
- w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
98
- h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
99
- w1.append(w-p_size)
100
- h1.append(h-p_size)
101
- # print(w1)
102
- # print(h1)
103
- for i in w1:
104
- for j in h1:
105
- patches.append(img[i:i+p_size, j:j+p_size,:])
106
- else:
107
- patches.append(img)
108
-
109
- return patches
110
-
111
-
112
- def imssave(imgs, img_path):
113
- """
114
- imgs: list, N images of size WxHxC
115
- """
116
- img_name, ext = os.path.splitext(os.path.basename(img_path))
117
-
118
- for i, img in enumerate(imgs):
119
- if img.ndim == 3:
120
- img = img[:, :, [2, 1, 0]]
121
- new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
122
- cv2.imwrite(new_path, img)
123
-
124
-
125
- def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
126
- """
127
- split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
128
- and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
129
- will be splitted.
130
- Args:
131
- original_dataroot:
132
- taget_dataroot:
133
- p_size: size of small images
134
- p_overlap: patch size in training is a good choice
135
- p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
136
- """
137
- paths = get_image_paths(original_dataroot)
138
- for img_path in paths:
139
- # img_name, ext = os.path.splitext(os.path.basename(img_path))
140
- img = imread_uint(img_path, n_channels=n_channels)
141
- patches = patches_from_image(img, p_size, p_overlap, p_max)
142
- imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
143
- #if original_dataroot == taget_dataroot:
144
- #del img_path
145
-
146
- '''
147
- # --------------------------------------------
148
- # makedir
149
- # --------------------------------------------
150
- '''
151
-
152
-
153
- def mkdir(path):
154
- if not os.path.exists(path):
155
- os.makedirs(path)
156
-
157
-
158
- def mkdirs(paths):
159
- if isinstance(paths, str):
160
- mkdir(paths)
161
- else:
162
- for path in paths:
163
- mkdir(path)
164
-
165
-
166
- def mkdir_and_rename(path):
167
- if os.path.exists(path):
168
- new_name = path + '_archived_' + get_timestamp()
169
- print('Path already exists. Rename it to [{:s}]'.format(new_name))
170
- os.rename(path, new_name)
171
- os.makedirs(path)
172
-
173
-
174
- '''
175
- # --------------------------------------------
176
- # read image from path
177
- # opencv is fast, but read BGR numpy image
178
- # --------------------------------------------
179
- '''
180
-
181
-
182
- # --------------------------------------------
183
- # get uint8 image of size HxWxn_channles (RGB)
184
- # --------------------------------------------
185
- def imread_uint(path, n_channels=3):
186
- # input: path
187
- # output: HxWx3(RGB or GGG), or HxWx1 (G)
188
- if n_channels == 1:
189
- img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
190
- img = np.expand_dims(img, axis=2) # HxWx1
191
- elif n_channels == 3:
192
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
193
- if img.ndim == 2:
194
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
195
- else:
196
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
197
- return img
198
-
199
-
200
- # --------------------------------------------
201
- # matlab's imwrite
202
- # --------------------------------------------
203
- def imsave(img, img_path):
204
- img = np.squeeze(img)
205
- if img.ndim == 3:
206
- img = img[:, :, [2, 1, 0]]
207
- cv2.imwrite(img_path, img)
208
-
209
- def imwrite(img, img_path):
210
- img = np.squeeze(img)
211
- if img.ndim == 3:
212
- img = img[:, :, [2, 1, 0]]
213
- cv2.imwrite(img_path, img)
214
-
215
-
216
-
217
- # --------------------------------------------
218
- # get single image of size HxWxn_channles (BGR)
219
- # --------------------------------------------
220
- def read_img(path):
221
- # read image by cv2
222
- # return: Numpy float32, HWC, BGR, [0,1]
223
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
224
- img = img.astype(np.float32) / 255.
225
- if img.ndim == 2:
226
- img = np.expand_dims(img, axis=2)
227
- # some images have 4 channels
228
- if img.shape[2] > 3:
229
- img = img[:, :, :3]
230
- return img
231
-
232
-
233
- '''
234
- # --------------------------------------------
235
- # image format conversion
236
- # --------------------------------------------
237
- # numpy(single) <---> numpy(unit)
238
- # numpy(single) <---> tensor
239
- # numpy(unit) <---> tensor
240
- # --------------------------------------------
241
- '''
242
-
243
-
244
- # --------------------------------------------
245
- # numpy(single) [0, 1] <---> numpy(unit)
246
- # --------------------------------------------
247
-
248
-
249
- def uint2single(img):
250
-
251
- return np.float32(img/255.)
252
-
253
-
254
- def single2uint(img):
255
-
256
- return np.uint8((img.clip(0, 1)*255.).round())
257
-
258
-
259
- def uint162single(img):
260
-
261
- return np.float32(img/65535.)
262
-
263
-
264
- def single2uint16(img):
265
-
266
- return np.uint16((img.clip(0, 1)*65535.).round())
267
-
268
-
269
- # --------------------------------------------
270
- # numpy(unit) (HxWxC or HxW) <---> tensor
271
- # --------------------------------------------
272
-
273
-
274
- # convert uint to 4-dimensional torch tensor
275
- def uint2tensor4(img):
276
- if img.ndim == 2:
277
- img = np.expand_dims(img, axis=2)
278
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
279
-
280
-
281
- # convert uint to 3-dimensional torch tensor
282
- def uint2tensor3(img):
283
- if img.ndim == 2:
284
- img = np.expand_dims(img, axis=2)
285
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
286
-
287
-
288
- # convert 2/3/4-dimensional torch tensor to uint
289
- def tensor2uint(img):
290
- img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
291
- if img.ndim == 3:
292
- img = np.transpose(img, (1, 2, 0))
293
- return np.uint8((img*255.0).round())
294
-
295
-
296
- # --------------------------------------------
297
- # numpy(single) (HxWxC) <---> tensor
298
- # --------------------------------------------
299
-
300
-
301
- # convert single (HxWxC) to 3-dimensional torch tensor
302
- def single2tensor3(img):
303
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
304
-
305
-
306
- # convert single (HxWxC) to 4-dimensional torch tensor
307
- def single2tensor4(img):
308
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
309
-
310
-
311
- # convert torch tensor to single
312
- def tensor2single(img):
313
- img = img.data.squeeze().float().cpu().numpy()
314
- if img.ndim == 3:
315
- img = np.transpose(img, (1, 2, 0))
316
-
317
- return img
318
-
319
- # convert torch tensor to single
320
- def tensor2single3(img):
321
- img = img.data.squeeze().float().cpu().numpy()
322
- if img.ndim == 3:
323
- img = np.transpose(img, (1, 2, 0))
324
- elif img.ndim == 2:
325
- img = np.expand_dims(img, axis=2)
326
- return img
327
-
328
-
329
- def single2tensor5(img):
330
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
331
-
332
-
333
- def single32tensor5(img):
334
- return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
335
-
336
-
337
- def single42tensor4(img):
338
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
339
-
340
-
341
- # from skimage.io import imread, imsave
342
- def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
343
- '''
344
- Converts a torch Tensor into an image Numpy array of BGR channel order
345
- Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
346
- Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
347
- '''
348
- tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
349
- tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
350
- n_dim = tensor.dim()
351
- if n_dim == 4:
352
- n_img = len(tensor)
353
- img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
354
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
355
- elif n_dim == 3:
356
- img_np = tensor.numpy()
357
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
358
- elif n_dim == 2:
359
- img_np = tensor.numpy()
360
- else:
361
- raise TypeError(
362
- 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
363
- if out_type == np.uint8:
364
- img_np = (img_np * 255.0).round()
365
- # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
366
- return img_np.astype(out_type)
367
-
368
-
369
- '''
370
- # --------------------------------------------
371
- # Augmentation, flipe and/or rotate
372
- # --------------------------------------------
373
- # The following two are enough.
374
- # (1) augmet_img: numpy image of WxHxC or WxH
375
- # (2) augment_img_tensor4: tensor image 1xCxWxH
376
- # --------------------------------------------
377
- '''
378
-
379
-
380
- def augment_img(img, mode=0):
381
- '''Kai Zhang (github: https://github.com/cszn)
382
- '''
383
- if mode == 0:
384
- return img
385
- elif mode == 1:
386
- return np.flipud(np.rot90(img))
387
- elif mode == 2:
388
- return np.flipud(img)
389
- elif mode == 3:
390
- return np.rot90(img, k=3)
391
- elif mode == 4:
392
- return np.flipud(np.rot90(img, k=2))
393
- elif mode == 5:
394
- return np.rot90(img)
395
- elif mode == 6:
396
- return np.rot90(img, k=2)
397
- elif mode == 7:
398
- return np.flipud(np.rot90(img, k=3))
399
-
400
-
401
- def augment_img_tensor4(img, mode=0):
402
- '''Kai Zhang (github: https://github.com/cszn)
403
- '''
404
- if mode == 0:
405
- return img
406
- elif mode == 1:
407
- return img.rot90(1, [2, 3]).flip([2])
408
- elif mode == 2:
409
- return img.flip([2])
410
- elif mode == 3:
411
- return img.rot90(3, [2, 3])
412
- elif mode == 4:
413
- return img.rot90(2, [2, 3]).flip([2])
414
- elif mode == 5:
415
- return img.rot90(1, [2, 3])
416
- elif mode == 6:
417
- return img.rot90(2, [2, 3])
418
- elif mode == 7:
419
- return img.rot90(3, [2, 3]).flip([2])
420
-
421
-
422
- def augment_img_tensor(img, mode=0):
423
- '''Kai Zhang (github: https://github.com/cszn)
424
- '''
425
- img_size = img.size()
426
- img_np = img.data.cpu().numpy()
427
- if len(img_size) == 3:
428
- img_np = np.transpose(img_np, (1, 2, 0))
429
- elif len(img_size) == 4:
430
- img_np = np.transpose(img_np, (2, 3, 1, 0))
431
- img_np = augment_img(img_np, mode=mode)
432
- img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
433
- if len(img_size) == 3:
434
- img_tensor = img_tensor.permute(2, 0, 1)
435
- elif len(img_size) == 4:
436
- img_tensor = img_tensor.permute(3, 2, 0, 1)
437
-
438
- return img_tensor.type_as(img)
439
-
440
-
441
- def augment_img_np3(img, mode=0):
442
- if mode == 0:
443
- return img
444
- elif mode == 1:
445
- return img.transpose(1, 0, 2)
446
- elif mode == 2:
447
- return img[::-1, :, :]
448
- elif mode == 3:
449
- img = img[::-1, :, :]
450
- img = img.transpose(1, 0, 2)
451
- return img
452
- elif mode == 4:
453
- return img[:, ::-1, :]
454
- elif mode == 5:
455
- img = img[:, ::-1, :]
456
- img = img.transpose(1, 0, 2)
457
- return img
458
- elif mode == 6:
459
- img = img[:, ::-1, :]
460
- img = img[::-1, :, :]
461
- return img
462
- elif mode == 7:
463
- img = img[:, ::-1, :]
464
- img = img[::-1, :, :]
465
- img = img.transpose(1, 0, 2)
466
- return img
467
-
468
-
469
- def augment_imgs(img_list, hflip=True, rot=True):
470
- # horizontal flip OR rotate
471
- hflip = hflip and random.random() < 0.5
472
- vflip = rot and random.random() < 0.5
473
- rot90 = rot and random.random() < 0.5
474
-
475
- def _augment(img):
476
- if hflip:
477
- img = img[:, ::-1, :]
478
- if vflip:
479
- img = img[::-1, :, :]
480
- if rot90:
481
- img = img.transpose(1, 0, 2)
482
- return img
483
-
484
- return [_augment(img) for img in img_list]
485
-
486
-
487
- '''
488
- # --------------------------------------------
489
- # modcrop and shave
490
- # --------------------------------------------
491
- '''
492
-
493
-
494
- def modcrop(img_in, scale):
495
- # img_in: Numpy, HWC or HW
496
- img = np.copy(img_in)
497
- if img.ndim == 2:
498
- H, W = img.shape
499
- H_r, W_r = H % scale, W % scale
500
- img = img[:H - H_r, :W - W_r]
501
- elif img.ndim == 3:
502
- H, W, C = img.shape
503
- H_r, W_r = H % scale, W % scale
504
- img = img[:H - H_r, :W - W_r, :]
505
- else:
506
- raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
507
- return img
508
-
509
-
510
- def shave(img_in, border=0):
511
- # img_in: Numpy, HWC or HW
512
- img = np.copy(img_in)
513
- h, w = img.shape[:2]
514
- img = img[border:h-border, border:w-border]
515
- return img
516
-
517
-
518
- '''
519
- # --------------------------------------------
520
- # image processing process on numpy image
521
- # channel_convert(in_c, tar_type, img_list):
522
- # rgb2ycbcr(img, only_y=True):
523
- # bgr2ycbcr(img, only_y=True):
524
- # ycbcr2rgb(img):
525
- # --------------------------------------------
526
- '''
527
-
528
-
529
- def rgb2ycbcr(img, only_y=True):
530
- '''same as matlab rgb2ycbcr
531
- only_y: only return Y channel
532
- Input:
533
- uint8, [0, 255]
534
- float, [0, 1]
535
- '''
536
- in_img_type = img.dtype
537
- img.astype(np.float32)
538
- if in_img_type != np.uint8:
539
- img *= 255.
540
- # convert
541
- if only_y:
542
- rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
543
- else:
544
- rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
545
- [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
546
- if in_img_type == np.uint8:
547
- rlt = rlt.round()
548
- else:
549
- rlt /= 255.
550
- return rlt.astype(in_img_type)
551
-
552
-
553
- def ycbcr2rgb(img):
554
- '''same as matlab ycbcr2rgb
555
- Input:
556
- uint8, [0, 255]
557
- float, [0, 1]
558
- '''
559
- in_img_type = img.dtype
560
- img.astype(np.float32)
561
- if in_img_type != np.uint8:
562
- img *= 255.
563
- # convert
564
- rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
565
- [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
566
- if in_img_type == np.uint8:
567
- rlt = rlt.round()
568
- else:
569
- rlt /= 255.
570
- return rlt.astype(in_img_type)
571
-
572
-
573
- def bgr2ycbcr(img, only_y=True):
574
- '''bgr version of rgb2ycbcr
575
- only_y: only return Y channel
576
- Input:
577
- uint8, [0, 255]
578
- float, [0, 1]
579
- '''
580
- in_img_type = img.dtype
581
- img.astype(np.float32)
582
- if in_img_type != np.uint8:
583
- img *= 255.
584
- # convert
585
- if only_y:
586
- rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
587
- else:
588
- rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
589
- [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
590
- if in_img_type == np.uint8:
591
- rlt = rlt.round()
592
- else:
593
- rlt /= 255.
594
- return rlt.astype(in_img_type)
595
-
596
-
597
- def channel_convert(in_c, tar_type, img_list):
598
- # conversion among BGR, gray and y
599
- if in_c == 3 and tar_type == 'gray': # BGR to gray
600
- gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
601
- return [np.expand_dims(img, axis=2) for img in gray_list]
602
- elif in_c == 3 and tar_type == 'y': # BGR to y
603
- y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
604
- return [np.expand_dims(img, axis=2) for img in y_list]
605
- elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
606
- return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
607
- else:
608
- return img_list
609
-
610
-
611
- '''
612
- # --------------------------------------------
613
- # metric, PSNR and SSIM
614
- # --------------------------------------------
615
- '''
616
-
617
-
618
- # --------------------------------------------
619
- # PSNR
620
- # --------------------------------------------
621
- def calculate_psnr(img1, img2, border=0):
622
- # img1 and img2 have range [0, 255]
623
- #img1 = img1.squeeze()
624
- #img2 = img2.squeeze()
625
- if not img1.shape == img2.shape:
626
- raise ValueError('Input images must have the same dimensions.')
627
- h, w = img1.shape[:2]
628
- img1 = img1[border:h-border, border:w-border]
629
- img2 = img2[border:h-border, border:w-border]
630
-
631
- img1 = img1.astype(np.float64)
632
- img2 = img2.astype(np.float64)
633
- mse = np.mean((img1 - img2)**2)
634
- if mse == 0:
635
- return float('inf')
636
- return 20 * math.log10(255.0 / math.sqrt(mse))
637
-
638
-
639
- # --------------------------------------------
640
- # SSIM
641
- # --------------------------------------------
642
- def calculate_ssim(img1, img2, border=0):
643
- '''calculate SSIM
644
- the same outputs as MATLAB's
645
- img1, img2: [0, 255]
646
- '''
647
- #img1 = img1.squeeze()
648
- #img2 = img2.squeeze()
649
- if not img1.shape == img2.shape:
650
- raise ValueError('Input images must have the same dimensions.')
651
- h, w = img1.shape[:2]
652
- img1 = img1[border:h-border, border:w-border]
653
- img2 = img2[border:h-border, border:w-border]
654
-
655
- if img1.ndim == 2:
656
- return ssim(img1, img2)
657
- elif img1.ndim == 3:
658
- if img1.shape[2] == 3:
659
- ssims = []
660
- for i in range(3):
661
- ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
662
- return np.array(ssims).mean()
663
- elif img1.shape[2] == 1:
664
- return ssim(np.squeeze(img1), np.squeeze(img2))
665
- else:
666
- raise ValueError('Wrong input image dimensions.')
667
-
668
-
669
- def ssim(img1, img2):
670
- C1 = (0.01 * 255)**2
671
- C2 = (0.03 * 255)**2
672
-
673
- img1 = img1.astype(np.float64)
674
- img2 = img2.astype(np.float64)
675
- kernel = cv2.getGaussianKernel(11, 1.5)
676
- window = np.outer(kernel, kernel.transpose())
677
-
678
- mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
679
- mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
680
- mu1_sq = mu1**2
681
- mu2_sq = mu2**2
682
- mu1_mu2 = mu1 * mu2
683
- sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
684
- sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
685
- sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
686
-
687
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
688
- (sigma1_sq + sigma2_sq + C2))
689
- return ssim_map.mean()
690
-
691
-
692
- '''
693
- # --------------------------------------------
694
- # matlab's bicubic imresize (numpy and torch) [0, 1]
695
- # --------------------------------------------
696
- '''
697
-
698
-
699
- # matlab 'imresize' function, now only support 'bicubic'
700
- def cubic(x):
701
- absx = torch.abs(x)
702
- absx2 = absx**2
703
- absx3 = absx**3
704
- return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
705
- (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
706
-
707
-
708
- def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
709
- if (scale < 1) and (antialiasing):
710
- # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
711
- kernel_width = kernel_width / scale
712
-
713
- # Output-space coordinates
714
- x = torch.linspace(1, out_length, out_length)
715
-
716
- # Input-space coordinates. Calculate the inverse mapping such that 0.5
717
- # in output space maps to 0.5 in input space, and 0.5+scale in output
718
- # space maps to 1.5 in input space.
719
- u = x / scale + 0.5 * (1 - 1 / scale)
720
-
721
- # What is the left-most pixel that can be involved in the computation?
722
- left = torch.floor(u - kernel_width / 2)
723
-
724
- # What is the maximum number of pixels that can be involved in the
725
- # computation? Note: it's OK to use an extra pixel here; if the
726
- # corresponding weights are all zero, it will be eliminated at the end
727
- # of this function.
728
- P = math.ceil(kernel_width) + 2
729
-
730
- # The indices of the input pixels involved in computing the k-th output
731
- # pixel are in row k of the indices matrix.
732
- indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
733
- 1, P).expand(out_length, P)
734
-
735
- # The weights used to compute the k-th output pixel are in row k of the
736
- # weights matrix.
737
- distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
738
- # apply cubic kernel
739
- if (scale < 1) and (antialiasing):
740
- weights = scale * cubic(distance_to_center * scale)
741
- else:
742
- weights = cubic(distance_to_center)
743
- # Normalize the weights matrix so that each row sums to 1.
744
- weights_sum = torch.sum(weights, 1).view(out_length, 1)
745
- weights = weights / weights_sum.expand(out_length, P)
746
-
747
- # If a column in weights is all zero, get rid of it. only consider the first and last column.
748
- weights_zero_tmp = torch.sum((weights == 0), 0)
749
- if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
750
- indices = indices.narrow(1, 1, P - 2)
751
- weights = weights.narrow(1, 1, P - 2)
752
- if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
753
- indices = indices.narrow(1, 0, P - 2)
754
- weights = weights.narrow(1, 0, P - 2)
755
- weights = weights.contiguous()
756
- indices = indices.contiguous()
757
- sym_len_s = -indices.min() + 1
758
- sym_len_e = indices.max() - in_length
759
- indices = indices + sym_len_s - 1
760
- return weights, indices, int(sym_len_s), int(sym_len_e)
761
-
762
-
763
- # --------------------------------------------
764
- # imresize for tensor image [0, 1]
765
- # --------------------------------------------
766
- def imresize(img, scale, antialiasing=True):
767
- # Now the scale should be the same for H and W
768
- # input: img: pytorch tensor, CHW or HW [0,1]
769
- # output: CHW or HW [0,1] w/o round
770
- need_squeeze = True if img.dim() == 2 else False
771
- if need_squeeze:
772
- img.unsqueeze_(0)
773
- in_C, in_H, in_W = img.size()
774
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
775
- kernel_width = 4
776
- kernel = 'cubic'
777
-
778
- # Return the desired dimension order for performing the resize. The
779
- # strategy is to perform the resize first along the dimension with the
780
- # smallest scale factor.
781
- # Now we do not support this.
782
-
783
- # get weights and indices
784
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
785
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
786
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
787
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
788
- # process H dimension
789
- # symmetric copying
790
- img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
791
- img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
792
-
793
- sym_patch = img[:, :sym_len_Hs, :]
794
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
795
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
796
- img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
797
-
798
- sym_patch = img[:, -sym_len_He:, :]
799
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
800
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
801
- img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
802
-
803
- out_1 = torch.FloatTensor(in_C, out_H, in_W)
804
- kernel_width = weights_H.size(1)
805
- for i in range(out_H):
806
- idx = int(indices_H[i][0])
807
- for j in range(out_C):
808
- out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
809
-
810
- # process W dimension
811
- # symmetric copying
812
- out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
813
- out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
814
-
815
- sym_patch = out_1[:, :, :sym_len_Ws]
816
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
817
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
818
- out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
819
-
820
- sym_patch = out_1[:, :, -sym_len_We:]
821
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
822
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
823
- out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
824
-
825
- out_2 = torch.FloatTensor(in_C, out_H, out_W)
826
- kernel_width = weights_W.size(1)
827
- for i in range(out_W):
828
- idx = int(indices_W[i][0])
829
- for j in range(out_C):
830
- out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
831
- if need_squeeze:
832
- out_2.squeeze_()
833
- return out_2
834
-
835
-
836
- # --------------------------------------------
837
- # imresize for numpy image [0, 1]
838
- # --------------------------------------------
839
- def imresize_np(img, scale, antialiasing=True):
840
- # Now the scale should be the same for H and W
841
- # input: img: Numpy, HWC or HW [0,1]
842
- # output: HWC or HW [0,1] w/o round
843
- img = torch.from_numpy(img)
844
- need_squeeze = True if img.dim() == 2 else False
845
- if need_squeeze:
846
- img.unsqueeze_(2)
847
-
848
- in_H, in_W, in_C = img.size()
849
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
850
- kernel_width = 4
851
- kernel = 'cubic'
852
-
853
- # Return the desired dimension order for performing the resize. The
854
- # strategy is to perform the resize first along the dimension with the
855
- # smallest scale factor.
856
- # Now we do not support this.
857
-
858
- # get weights and indices
859
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
860
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
861
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
862
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
863
- # process H dimension
864
- # symmetric copying
865
- img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
866
- img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
867
-
868
- sym_patch = img[:sym_len_Hs, :, :]
869
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
870
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
871
- img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
872
-
873
- sym_patch = img[-sym_len_He:, :, :]
874
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
875
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
876
- img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
877
-
878
- out_1 = torch.FloatTensor(out_H, in_W, in_C)
879
- kernel_width = weights_H.size(1)
880
- for i in range(out_H):
881
- idx = int(indices_H[i][0])
882
- for j in range(out_C):
883
- out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
884
-
885
- # process W dimension
886
- # symmetric copying
887
- out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
888
- out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
889
-
890
- sym_patch = out_1[:, :sym_len_Ws, :]
891
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
892
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
893
- out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
894
-
895
- sym_patch = out_1[:, -sym_len_We:, :]
896
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
897
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
898
- out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
899
-
900
- out_2 = torch.FloatTensor(out_H, out_W, in_C)
901
- kernel_width = weights_W.size(1)
902
- for i in range(out_W):
903
- idx = int(indices_W[i][0])
904
- for j in range(out_C):
905
- out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
906
- if need_squeeze:
907
- out_2.squeeze_()
908
-
909
- return out_2.numpy()
910
-
911
-
912
- if __name__ == '__main__':
913
- print('---')
914
- # img = imread_uint('test.bmp', 3)
915
- # img = uint2single(img)
916
- # img_bicubic = imresize_np(img, 1/4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/__init__.py DELETED
File without changes
ldm/modules/midas/api.py DELETED
@@ -1,170 +0,0 @@
1
- # based on https://github.com/isl-org/MiDaS
2
-
3
- import cv2
4
- import torch
5
- import torch.nn as nn
6
- from torchvision.transforms import Compose
7
-
8
- from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
9
- from ldm.modules.midas.midas.midas_net import MidasNet
10
- from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
11
- from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
12
-
13
-
14
- ISL_PATHS = {
15
- "dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
16
- "dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
17
- "midas_v21": "",
18
- "midas_v21_small": "",
19
- }
20
-
21
-
22
- def disabled_train(self, mode=True):
23
- """Overwrite model.train with this function to make sure train/eval mode
24
- does not change anymore."""
25
- return self
26
-
27
-
28
- def load_midas_transform(model_type):
29
- # https://github.com/isl-org/MiDaS/blob/master/run.py
30
- # load transform only
31
- if model_type == "dpt_large": # DPT-Large
32
- net_w, net_h = 384, 384
33
- resize_mode = "minimal"
34
- normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
35
-
36
- elif model_type == "dpt_hybrid": # DPT-Hybrid
37
- net_w, net_h = 384, 384
38
- resize_mode = "minimal"
39
- normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
40
-
41
- elif model_type == "midas_v21":
42
- net_w, net_h = 384, 384
43
- resize_mode = "upper_bound"
44
- normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
45
-
46
- elif model_type == "midas_v21_small":
47
- net_w, net_h = 256, 256
48
- resize_mode = "upper_bound"
49
- normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
50
-
51
- else:
52
- assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
53
-
54
- transform = Compose(
55
- [
56
- Resize(
57
- net_w,
58
- net_h,
59
- resize_target=None,
60
- keep_aspect_ratio=True,
61
- ensure_multiple_of=32,
62
- resize_method=resize_mode,
63
- image_interpolation_method=cv2.INTER_CUBIC,
64
- ),
65
- normalization,
66
- PrepareForNet(),
67
- ]
68
- )
69
-
70
- return transform
71
-
72
-
73
- def load_model(model_type):
74
- # https://github.com/isl-org/MiDaS/blob/master/run.py
75
- # load network
76
- model_path = ISL_PATHS[model_type]
77
- if model_type == "dpt_large": # DPT-Large
78
- model = DPTDepthModel(
79
- path=model_path,
80
- backbone="vitl16_384",
81
- non_negative=True,
82
- )
83
- net_w, net_h = 384, 384
84
- resize_mode = "minimal"
85
- normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
86
-
87
- elif model_type == "dpt_hybrid": # DPT-Hybrid
88
- model = DPTDepthModel(
89
- path=model_path,
90
- backbone="vitb_rn50_384",
91
- non_negative=True,
92
- )
93
- net_w, net_h = 384, 384
94
- resize_mode = "minimal"
95
- normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
96
-
97
- elif model_type == "midas_v21":
98
- model = MidasNet(model_path, non_negative=True)
99
- net_w, net_h = 384, 384
100
- resize_mode = "upper_bound"
101
- normalization = NormalizeImage(
102
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
103
- )
104
-
105
- elif model_type == "midas_v21_small":
106
- model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
107
- non_negative=True, blocks={'expand': True})
108
- net_w, net_h = 256, 256
109
- resize_mode = "upper_bound"
110
- normalization = NormalizeImage(
111
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
112
- )
113
-
114
- else:
115
- print(f"model_type '{model_type}' not implemented, use: --model_type large")
116
- assert False
117
-
118
- transform = Compose(
119
- [
120
- Resize(
121
- net_w,
122
- net_h,
123
- resize_target=None,
124
- keep_aspect_ratio=True,
125
- ensure_multiple_of=32,
126
- resize_method=resize_mode,
127
- image_interpolation_method=cv2.INTER_CUBIC,
128
- ),
129
- normalization,
130
- PrepareForNet(),
131
- ]
132
- )
133
-
134
- return model.eval(), transform
135
-
136
-
137
- class MiDaSInference(nn.Module):
138
- MODEL_TYPES_TORCH_HUB = [
139
- "DPT_Large",
140
- "DPT_Hybrid",
141
- "MiDaS_small"
142
- ]
143
- MODEL_TYPES_ISL = [
144
- "dpt_large",
145
- "dpt_hybrid",
146
- "midas_v21",
147
- "midas_v21_small",
148
- ]
149
-
150
- def __init__(self, model_type):
151
- super().__init__()
152
- assert (model_type in self.MODEL_TYPES_ISL)
153
- model, _ = load_model(model_type)
154
- self.model = model
155
- self.model.train = disabled_train
156
-
157
- def forward(self, x):
158
- # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
159
- # NOTE: we expect that the correct transform has been called during dataloading.
160
- with torch.no_grad():
161
- prediction = self.model(x)
162
- prediction = torch.nn.functional.interpolate(
163
- prediction.unsqueeze(1),
164
- size=x.shape[2:],
165
- mode="bicubic",
166
- align_corners=False,
167
- )
168
- assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
169
- return prediction
170
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/__init__.py DELETED
File without changes
ldm/modules/midas/midas/base_model.py DELETED
@@ -1,16 +0,0 @@
1
- import torch
2
-
3
-
4
- class BaseModel(torch.nn.Module):
5
- def load(self, path):
6
- """Load model from file.
7
-
8
- Args:
9
- path (str): file path
10
- """
11
- parameters = torch.load(path, map_location=torch.device('cpu'))
12
-
13
- if "optimizer" in parameters:
14
- parameters = parameters["model"]
15
-
16
- self.load_state_dict(parameters)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/blocks.py DELETED
@@ -1,342 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from .vit import (
5
- _make_pretrained_vitb_rn50_384,
6
- _make_pretrained_vitl16_384,
7
- _make_pretrained_vitb16_384,
8
- forward_vit,
9
- )
10
-
11
- def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
12
- if backbone == "vitl16_384":
13
- pretrained = _make_pretrained_vitl16_384(
14
- use_pretrained, hooks=hooks, use_readout=use_readout
15
- )
16
- scratch = _make_scratch(
17
- [256, 512, 1024, 1024], features, groups=groups, expand=expand
18
- ) # ViT-L/16 - 85.0% Top1 (backbone)
19
- elif backbone == "vitb_rn50_384":
20
- pretrained = _make_pretrained_vitb_rn50_384(
21
- use_pretrained,
22
- hooks=hooks,
23
- use_vit_only=use_vit_only,
24
- use_readout=use_readout,
25
- )
26
- scratch = _make_scratch(
27
- [256, 512, 768, 768], features, groups=groups, expand=expand
28
- ) # ViT-H/16 - 85.0% Top1 (backbone)
29
- elif backbone == "vitb16_384":
30
- pretrained = _make_pretrained_vitb16_384(
31
- use_pretrained, hooks=hooks, use_readout=use_readout
32
- )
33
- scratch = _make_scratch(
34
- [96, 192, 384, 768], features, groups=groups, expand=expand
35
- ) # ViT-B/16 - 84.6% Top1 (backbone)
36
- elif backbone == "resnext101_wsl":
37
- pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
38
- scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
39
- elif backbone == "efficientnet_lite3":
40
- pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
41
- scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
42
- else:
43
- print(f"Backbone '{backbone}' not implemented")
44
- assert False
45
-
46
- return pretrained, scratch
47
-
48
-
49
- def _make_scratch(in_shape, out_shape, groups=1, expand=False):
50
- scratch = nn.Module()
51
-
52
- out_shape1 = out_shape
53
- out_shape2 = out_shape
54
- out_shape3 = out_shape
55
- out_shape4 = out_shape
56
- if expand==True:
57
- out_shape1 = out_shape
58
- out_shape2 = out_shape*2
59
- out_shape3 = out_shape*4
60
- out_shape4 = out_shape*8
61
-
62
- scratch.layer1_rn = nn.Conv2d(
63
- in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
64
- )
65
- scratch.layer2_rn = nn.Conv2d(
66
- in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
67
- )
68
- scratch.layer3_rn = nn.Conv2d(
69
- in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
70
- )
71
- scratch.layer4_rn = nn.Conv2d(
72
- in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
73
- )
74
-
75
- return scratch
76
-
77
-
78
- def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
79
- efficientnet = torch.hub.load(
80
- "rwightman/gen-efficientnet-pytorch",
81
- "tf_efficientnet_lite3",
82
- pretrained=use_pretrained,
83
- exportable=exportable
84
- )
85
- return _make_efficientnet_backbone(efficientnet)
86
-
87
-
88
- def _make_efficientnet_backbone(effnet):
89
- pretrained = nn.Module()
90
-
91
- pretrained.layer1 = nn.Sequential(
92
- effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
93
- )
94
- pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
95
- pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
96
- pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
97
-
98
- return pretrained
99
-
100
-
101
- def _make_resnet_backbone(resnet):
102
- pretrained = nn.Module()
103
- pretrained.layer1 = nn.Sequential(
104
- resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
105
- )
106
-
107
- pretrained.layer2 = resnet.layer2
108
- pretrained.layer3 = resnet.layer3
109
- pretrained.layer4 = resnet.layer4
110
-
111
- return pretrained
112
-
113
-
114
- def _make_pretrained_resnext101_wsl(use_pretrained):
115
- resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
116
- return _make_resnet_backbone(resnet)
117
-
118
-
119
-
120
- class Interpolate(nn.Module):
121
- """Interpolation module.
122
- """
123
-
124
- def __init__(self, scale_factor, mode, align_corners=False):
125
- """Init.
126
-
127
- Args:
128
- scale_factor (float): scaling
129
- mode (str): interpolation mode
130
- """
131
- super(Interpolate, self).__init__()
132
-
133
- self.interp = nn.functional.interpolate
134
- self.scale_factor = scale_factor
135
- self.mode = mode
136
- self.align_corners = align_corners
137
-
138
- def forward(self, x):
139
- """Forward pass.
140
-
141
- Args:
142
- x (tensor): input
143
-
144
- Returns:
145
- tensor: interpolated data
146
- """
147
-
148
- x = self.interp(
149
- x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
150
- )
151
-
152
- return x
153
-
154
-
155
- class ResidualConvUnit(nn.Module):
156
- """Residual convolution module.
157
- """
158
-
159
- def __init__(self, features):
160
- """Init.
161
-
162
- Args:
163
- features (int): number of features
164
- """
165
- super().__init__()
166
-
167
- self.conv1 = nn.Conv2d(
168
- features, features, kernel_size=3, stride=1, padding=1, bias=True
169
- )
170
-
171
- self.conv2 = nn.Conv2d(
172
- features, features, kernel_size=3, stride=1, padding=1, bias=True
173
- )
174
-
175
- self.relu = nn.ReLU(inplace=True)
176
-
177
- def forward(self, x):
178
- """Forward pass.
179
-
180
- Args:
181
- x (tensor): input
182
-
183
- Returns:
184
- tensor: output
185
- """
186
- out = self.relu(x)
187
- out = self.conv1(out)
188
- out = self.relu(out)
189
- out = self.conv2(out)
190
-
191
- return out + x
192
-
193
-
194
- class FeatureFusionBlock(nn.Module):
195
- """Feature fusion block.
196
- """
197
-
198
- def __init__(self, features):
199
- """Init.
200
-
201
- Args:
202
- features (int): number of features
203
- """
204
- super(FeatureFusionBlock, self).__init__()
205
-
206
- self.resConfUnit1 = ResidualConvUnit(features)
207
- self.resConfUnit2 = ResidualConvUnit(features)
208
-
209
- def forward(self, *xs):
210
- """Forward pass.
211
-
212
- Returns:
213
- tensor: output
214
- """
215
- output = xs[0]
216
-
217
- if len(xs) == 2:
218
- output += self.resConfUnit1(xs[1])
219
-
220
- output = self.resConfUnit2(output)
221
-
222
- output = nn.functional.interpolate(
223
- output, scale_factor=2, mode="bilinear", align_corners=True
224
- )
225
-
226
- return output
227
-
228
-
229
-
230
-
231
- class ResidualConvUnit_custom(nn.Module):
232
- """Residual convolution module.
233
- """
234
-
235
- def __init__(self, features, activation, bn):
236
- """Init.
237
-
238
- Args:
239
- features (int): number of features
240
- """
241
- super().__init__()
242
-
243
- self.bn = bn
244
-
245
- self.groups=1
246
-
247
- self.conv1 = nn.Conv2d(
248
- features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
249
- )
250
-
251
- self.conv2 = nn.Conv2d(
252
- features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
253
- )
254
-
255
- if self.bn==True:
256
- self.bn1 = nn.BatchNorm2d(features)
257
- self.bn2 = nn.BatchNorm2d(features)
258
-
259
- self.activation = activation
260
-
261
- self.skip_add = nn.quantized.FloatFunctional()
262
-
263
- def forward(self, x):
264
- """Forward pass.
265
-
266
- Args:
267
- x (tensor): input
268
-
269
- Returns:
270
- tensor: output
271
- """
272
-
273
- out = self.activation(x)
274
- out = self.conv1(out)
275
- if self.bn==True:
276
- out = self.bn1(out)
277
-
278
- out = self.activation(out)
279
- out = self.conv2(out)
280
- if self.bn==True:
281
- out = self.bn2(out)
282
-
283
- if self.groups > 1:
284
- out = self.conv_merge(out)
285
-
286
- return self.skip_add.add(out, x)
287
-
288
- # return out + x
289
-
290
-
291
- class FeatureFusionBlock_custom(nn.Module):
292
- """Feature fusion block.
293
- """
294
-
295
- def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
296
- """Init.
297
-
298
- Args:
299
- features (int): number of features
300
- """
301
- super(FeatureFusionBlock_custom, self).__init__()
302
-
303
- self.deconv = deconv
304
- self.align_corners = align_corners
305
-
306
- self.groups=1
307
-
308
- self.expand = expand
309
- out_features = features
310
- if self.expand==True:
311
- out_features = features//2
312
-
313
- self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
314
-
315
- self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
316
- self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
317
-
318
- self.skip_add = nn.quantized.FloatFunctional()
319
-
320
- def forward(self, *xs):
321
- """Forward pass.
322
-
323
- Returns:
324
- tensor: output
325
- """
326
- output = xs[0]
327
-
328
- if len(xs) == 2:
329
- res = self.resConfUnit1(xs[1])
330
- output = self.skip_add.add(output, res)
331
- # output += res
332
-
333
- output = self.resConfUnit2(output)
334
-
335
- output = nn.functional.interpolate(
336
- output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
337
- )
338
-
339
- output = self.out_conv(output)
340
-
341
- return output
342
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/dpt_depth.py DELETED
@@ -1,109 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
- from .base_model import BaseModel
6
- from .blocks import (
7
- FeatureFusionBlock,
8
- FeatureFusionBlock_custom,
9
- Interpolate,
10
- _make_encoder,
11
- forward_vit,
12
- )
13
-
14
-
15
- def _make_fusion_block(features, use_bn):
16
- return FeatureFusionBlock_custom(
17
- features,
18
- nn.ReLU(False),
19
- deconv=False,
20
- bn=use_bn,
21
- expand=False,
22
- align_corners=True,
23
- )
24
-
25
-
26
- class DPT(BaseModel):
27
- def __init__(
28
- self,
29
- head,
30
- features=256,
31
- backbone="vitb_rn50_384",
32
- readout="project",
33
- channels_last=False,
34
- use_bn=False,
35
- ):
36
-
37
- super(DPT, self).__init__()
38
-
39
- self.channels_last = channels_last
40
-
41
- hooks = {
42
- "vitb_rn50_384": [0, 1, 8, 11],
43
- "vitb16_384": [2, 5, 8, 11],
44
- "vitl16_384": [5, 11, 17, 23],
45
- }
46
-
47
- # Instantiate backbone and reassemble blocks
48
- self.pretrained, self.scratch = _make_encoder(
49
- backbone,
50
- features,
51
- False, # Set to true of you want to train from scratch, uses ImageNet weights
52
- groups=1,
53
- expand=False,
54
- exportable=False,
55
- hooks=hooks[backbone],
56
- use_readout=readout,
57
- )
58
-
59
- self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
60
- self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
61
- self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
62
- self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
63
-
64
- self.scratch.output_conv = head
65
-
66
-
67
- def forward(self, x):
68
- if self.channels_last == True:
69
- x.contiguous(memory_format=torch.channels_last)
70
-
71
- layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
72
-
73
- layer_1_rn = self.scratch.layer1_rn(layer_1)
74
- layer_2_rn = self.scratch.layer2_rn(layer_2)
75
- layer_3_rn = self.scratch.layer3_rn(layer_3)
76
- layer_4_rn = self.scratch.layer4_rn(layer_4)
77
-
78
- path_4 = self.scratch.refinenet4(layer_4_rn)
79
- path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
80
- path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
81
- path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
82
-
83
- out = self.scratch.output_conv(path_1)
84
-
85
- return out
86
-
87
-
88
- class DPTDepthModel(DPT):
89
- def __init__(self, path=None, non_negative=True, **kwargs):
90
- features = kwargs["features"] if "features" in kwargs else 256
91
-
92
- head = nn.Sequential(
93
- nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
94
- Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
95
- nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
96
- nn.ReLU(True),
97
- nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
98
- nn.ReLU(True) if non_negative else nn.Identity(),
99
- nn.Identity(),
100
- )
101
-
102
- super().__init__(head, **kwargs)
103
-
104
- if path is not None:
105
- self.load(path)
106
-
107
- def forward(self, x):
108
- return super().forward(x).squeeze(dim=1)
109
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/midas_net.py DELETED
@@ -1,76 +0,0 @@
1
- """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
- This file contains code that is adapted from
3
- https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
- """
5
- import torch
6
- import torch.nn as nn
7
-
8
- from .base_model import BaseModel
9
- from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
10
-
11
-
12
- class MidasNet(BaseModel):
13
- """Network for monocular depth estimation.
14
- """
15
-
16
- def __init__(self, path=None, features=256, non_negative=True):
17
- """Init.
18
-
19
- Args:
20
- path (str, optional): Path to saved model. Defaults to None.
21
- features (int, optional): Number of features. Defaults to 256.
22
- backbone (str, optional): Backbone network for encoder. Defaults to resnet50
23
- """
24
- print("Loading weights: ", path)
25
-
26
- super(MidasNet, self).__init__()
27
-
28
- use_pretrained = False if path is None else True
29
-
30
- self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
31
-
32
- self.scratch.refinenet4 = FeatureFusionBlock(features)
33
- self.scratch.refinenet3 = FeatureFusionBlock(features)
34
- self.scratch.refinenet2 = FeatureFusionBlock(features)
35
- self.scratch.refinenet1 = FeatureFusionBlock(features)
36
-
37
- self.scratch.output_conv = nn.Sequential(
38
- nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
39
- Interpolate(scale_factor=2, mode="bilinear"),
40
- nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
41
- nn.ReLU(True),
42
- nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
43
- nn.ReLU(True) if non_negative else nn.Identity(),
44
- )
45
-
46
- if path:
47
- self.load(path)
48
-
49
- def forward(self, x):
50
- """Forward pass.
51
-
52
- Args:
53
- x (tensor): input data (image)
54
-
55
- Returns:
56
- tensor: depth
57
- """
58
-
59
- layer_1 = self.pretrained.layer1(x)
60
- layer_2 = self.pretrained.layer2(layer_1)
61
- layer_3 = self.pretrained.layer3(layer_2)
62
- layer_4 = self.pretrained.layer4(layer_3)
63
-
64
- layer_1_rn = self.scratch.layer1_rn(layer_1)
65
- layer_2_rn = self.scratch.layer2_rn(layer_2)
66
- layer_3_rn = self.scratch.layer3_rn(layer_3)
67
- layer_4_rn = self.scratch.layer4_rn(layer_4)
68
-
69
- path_4 = self.scratch.refinenet4(layer_4_rn)
70
- path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
71
- path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
72
- path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
73
-
74
- out = self.scratch.output_conv(path_1)
75
-
76
- return torch.squeeze(out, dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/midas_net_custom.py DELETED
@@ -1,128 +0,0 @@
1
- """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
- This file contains code that is adapted from
3
- https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
- """
5
- import torch
6
- import torch.nn as nn
7
-
8
- from .base_model import BaseModel
9
- from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
10
-
11
-
12
- class MidasNet_small(BaseModel):
13
- """Network for monocular depth estimation.
14
- """
15
-
16
- def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
17
- blocks={'expand': True}):
18
- """Init.
19
-
20
- Args:
21
- path (str, optional): Path to saved model. Defaults to None.
22
- features (int, optional): Number of features. Defaults to 256.
23
- backbone (str, optional): Backbone network for encoder. Defaults to resnet50
24
- """
25
- print("Loading weights: ", path)
26
-
27
- super(MidasNet_small, self).__init__()
28
-
29
- use_pretrained = False if path else True
30
-
31
- self.channels_last = channels_last
32
- self.blocks = blocks
33
- self.backbone = backbone
34
-
35
- self.groups = 1
36
-
37
- features1=features
38
- features2=features
39
- features3=features
40
- features4=features
41
- self.expand = False
42
- if "expand" in self.blocks and self.blocks['expand'] == True:
43
- self.expand = True
44
- features1=features
45
- features2=features*2
46
- features3=features*4
47
- features4=features*8
48
-
49
- self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
50
-
51
- self.scratch.activation = nn.ReLU(False)
52
-
53
- self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
54
- self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
55
- self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
56
- self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
57
-
58
-
59
- self.scratch.output_conv = nn.Sequential(
60
- nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
61
- Interpolate(scale_factor=2, mode="bilinear"),
62
- nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
63
- self.scratch.activation,
64
- nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
65
- nn.ReLU(True) if non_negative else nn.Identity(),
66
- nn.Identity(),
67
- )
68
-
69
- if path:
70
- self.load(path)
71
-
72
-
73
- def forward(self, x):
74
- """Forward pass.
75
-
76
- Args:
77
- x (tensor): input data (image)
78
-
79
- Returns:
80
- tensor: depth
81
- """
82
- if self.channels_last==True:
83
- print("self.channels_last = ", self.channels_last)
84
- x.contiguous(memory_format=torch.channels_last)
85
-
86
-
87
- layer_1 = self.pretrained.layer1(x)
88
- layer_2 = self.pretrained.layer2(layer_1)
89
- layer_3 = self.pretrained.layer3(layer_2)
90
- layer_4 = self.pretrained.layer4(layer_3)
91
-
92
- layer_1_rn = self.scratch.layer1_rn(layer_1)
93
- layer_2_rn = self.scratch.layer2_rn(layer_2)
94
- layer_3_rn = self.scratch.layer3_rn(layer_3)
95
- layer_4_rn = self.scratch.layer4_rn(layer_4)
96
-
97
-
98
- path_4 = self.scratch.refinenet4(layer_4_rn)
99
- path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
100
- path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
101
- path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
102
-
103
- out = self.scratch.output_conv(path_1)
104
-
105
- return torch.squeeze(out, dim=1)
106
-
107
-
108
-
109
- def fuse_model(m):
110
- prev_previous_type = nn.Identity()
111
- prev_previous_name = ''
112
- previous_type = nn.Identity()
113
- previous_name = ''
114
- for name, module in m.named_modules():
115
- if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
116
- # print("FUSED ", prev_previous_name, previous_name, name)
117
- torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
118
- elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
119
- # print("FUSED ", prev_previous_name, previous_name)
120
- torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
121
- # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
122
- # print("FUSED ", previous_name, name)
123
- # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
124
-
125
- prev_previous_type = previous_type
126
- prev_previous_name = previous_name
127
- previous_type = type(module)
128
- previous_name = name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/transforms.py DELETED
@@ -1,234 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- import math
4
-
5
-
6
- def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
7
- """Rezise the sample to ensure the given size. Keeps aspect ratio.
8
-
9
- Args:
10
- sample (dict): sample
11
- size (tuple): image size
12
-
13
- Returns:
14
- tuple: new size
15
- """
16
- shape = list(sample["disparity"].shape)
17
-
18
- if shape[0] >= size[0] and shape[1] >= size[1]:
19
- return sample
20
-
21
- scale = [0, 0]
22
- scale[0] = size[0] / shape[0]
23
- scale[1] = size[1] / shape[1]
24
-
25
- scale = max(scale)
26
-
27
- shape[0] = math.ceil(scale * shape[0])
28
- shape[1] = math.ceil(scale * shape[1])
29
-
30
- # resize
31
- sample["image"] = cv2.resize(
32
- sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
33
- )
34
-
35
- sample["disparity"] = cv2.resize(
36
- sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
37
- )
38
- sample["mask"] = cv2.resize(
39
- sample["mask"].astype(np.float32),
40
- tuple(shape[::-1]),
41
- interpolation=cv2.INTER_NEAREST,
42
- )
43
- sample["mask"] = sample["mask"].astype(bool)
44
-
45
- return tuple(shape)
46
-
47
-
48
- class Resize(object):
49
- """Resize sample to given size (width, height).
50
- """
51
-
52
- def __init__(
53
- self,
54
- width,
55
- height,
56
- resize_target=True,
57
- keep_aspect_ratio=False,
58
- ensure_multiple_of=1,
59
- resize_method="lower_bound",
60
- image_interpolation_method=cv2.INTER_AREA,
61
- ):
62
- """Init.
63
-
64
- Args:
65
- width (int): desired output width
66
- height (int): desired output height
67
- resize_target (bool, optional):
68
- True: Resize the full sample (image, mask, target).
69
- False: Resize image only.
70
- Defaults to True.
71
- keep_aspect_ratio (bool, optional):
72
- True: Keep the aspect ratio of the input sample.
73
- Output sample might not have the given width and height, and
74
- resize behaviour depends on the parameter 'resize_method'.
75
- Defaults to False.
76
- ensure_multiple_of (int, optional):
77
- Output width and height is constrained to be multiple of this parameter.
78
- Defaults to 1.
79
- resize_method (str, optional):
80
- "lower_bound": Output will be at least as large as the given size.
81
- "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
82
- "minimal": Scale as least as possible. (Output size might be smaller than given size.)
83
- Defaults to "lower_bound".
84
- """
85
- self.__width = width
86
- self.__height = height
87
-
88
- self.__resize_target = resize_target
89
- self.__keep_aspect_ratio = keep_aspect_ratio
90
- self.__multiple_of = ensure_multiple_of
91
- self.__resize_method = resize_method
92
- self.__image_interpolation_method = image_interpolation_method
93
-
94
- def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
95
- y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
96
-
97
- if max_val is not None and y > max_val:
98
- y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
99
-
100
- if y < min_val:
101
- y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
102
-
103
- return y
104
-
105
- def get_size(self, width, height):
106
- # determine new height and width
107
- scale_height = self.__height / height
108
- scale_width = self.__width / width
109
-
110
- if self.__keep_aspect_ratio:
111
- if self.__resize_method == "lower_bound":
112
- # scale such that output size is lower bound
113
- if scale_width > scale_height:
114
- # fit width
115
- scale_height = scale_width
116
- else:
117
- # fit height
118
- scale_width = scale_height
119
- elif self.__resize_method == "upper_bound":
120
- # scale such that output size is upper bound
121
- if scale_width < scale_height:
122
- # fit width
123
- scale_height = scale_width
124
- else:
125
- # fit height
126
- scale_width = scale_height
127
- elif self.__resize_method == "minimal":
128
- # scale as least as possbile
129
- if abs(1 - scale_width) < abs(1 - scale_height):
130
- # fit width
131
- scale_height = scale_width
132
- else:
133
- # fit height
134
- scale_width = scale_height
135
- else:
136
- raise ValueError(
137
- f"resize_method {self.__resize_method} not implemented"
138
- )
139
-
140
- if self.__resize_method == "lower_bound":
141
- new_height = self.constrain_to_multiple_of(
142
- scale_height * height, min_val=self.__height
143
- )
144
- new_width = self.constrain_to_multiple_of(
145
- scale_width * width, min_val=self.__width
146
- )
147
- elif self.__resize_method == "upper_bound":
148
- new_height = self.constrain_to_multiple_of(
149
- scale_height * height, max_val=self.__height
150
- )
151
- new_width = self.constrain_to_multiple_of(
152
- scale_width * width, max_val=self.__width
153
- )
154
- elif self.__resize_method == "minimal":
155
- new_height = self.constrain_to_multiple_of(scale_height * height)
156
- new_width = self.constrain_to_multiple_of(scale_width * width)
157
- else:
158
- raise ValueError(f"resize_method {self.__resize_method} not implemented")
159
-
160
- return (new_width, new_height)
161
-
162
- def __call__(self, sample):
163
- width, height = self.get_size(
164
- sample["image"].shape[1], sample["image"].shape[0]
165
- )
166
-
167
- # resize sample
168
- sample["image"] = cv2.resize(
169
- sample["image"],
170
- (width, height),
171
- interpolation=self.__image_interpolation_method,
172
- )
173
-
174
- if self.__resize_target:
175
- if "disparity" in sample:
176
- sample["disparity"] = cv2.resize(
177
- sample["disparity"],
178
- (width, height),
179
- interpolation=cv2.INTER_NEAREST,
180
- )
181
-
182
- if "depth" in sample:
183
- sample["depth"] = cv2.resize(
184
- sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
185
- )
186
-
187
- sample["mask"] = cv2.resize(
188
- sample["mask"].astype(np.float32),
189
- (width, height),
190
- interpolation=cv2.INTER_NEAREST,
191
- )
192
- sample["mask"] = sample["mask"].astype(bool)
193
-
194
- return sample
195
-
196
-
197
- class NormalizeImage(object):
198
- """Normlize image by given mean and std.
199
- """
200
-
201
- def __init__(self, mean, std):
202
- self.__mean = mean
203
- self.__std = std
204
-
205
- def __call__(self, sample):
206
- sample["image"] = (sample["image"] - self.__mean) / self.__std
207
-
208
- return sample
209
-
210
-
211
- class PrepareForNet(object):
212
- """Prepare sample for usage as network input.
213
- """
214
-
215
- def __init__(self):
216
- pass
217
-
218
- def __call__(self, sample):
219
- image = np.transpose(sample["image"], (2, 0, 1))
220
- sample["image"] = np.ascontiguousarray(image).astype(np.float32)
221
-
222
- if "mask" in sample:
223
- sample["mask"] = sample["mask"].astype(np.float32)
224
- sample["mask"] = np.ascontiguousarray(sample["mask"])
225
-
226
- if "disparity" in sample:
227
- disparity = sample["disparity"].astype(np.float32)
228
- sample["disparity"] = np.ascontiguousarray(disparity)
229
-
230
- if "depth" in sample:
231
- depth = sample["depth"].astype(np.float32)
232
- sample["depth"] = np.ascontiguousarray(depth)
233
-
234
- return sample
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/midas/vit.py DELETED
@@ -1,491 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import timm
4
- import types
5
- import math
6
- import torch.nn.functional as F
7
-
8
-
9
- class Slice(nn.Module):
10
- def __init__(self, start_index=1):
11
- super(Slice, self).__init__()
12
- self.start_index = start_index
13
-
14
- def forward(self, x):
15
- return x[:, self.start_index :]
16
-
17
-
18
- class AddReadout(nn.Module):
19
- def __init__(self, start_index=1):
20
- super(AddReadout, self).__init__()
21
- self.start_index = start_index
22
-
23
- def forward(self, x):
24
- if self.start_index == 2:
25
- readout = (x[:, 0] + x[:, 1]) / 2
26
- else:
27
- readout = x[:, 0]
28
- return x[:, self.start_index :] + readout.unsqueeze(1)
29
-
30
-
31
- class ProjectReadout(nn.Module):
32
- def __init__(self, in_features, start_index=1):
33
- super(ProjectReadout, self).__init__()
34
- self.start_index = start_index
35
-
36
- self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
37
-
38
- def forward(self, x):
39
- readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
40
- features = torch.cat((x[:, self.start_index :], readout), -1)
41
-
42
- return self.project(features)
43
-
44
-
45
- class Transpose(nn.Module):
46
- def __init__(self, dim0, dim1):
47
- super(Transpose, self).__init__()
48
- self.dim0 = dim0
49
- self.dim1 = dim1
50
-
51
- def forward(self, x):
52
- x = x.transpose(self.dim0, self.dim1)
53
- return x
54
-
55
-
56
- def forward_vit(pretrained, x):
57
- b, c, h, w = x.shape
58
-
59
- glob = pretrained.model.forward_flex(x)
60
-
61
- layer_1 = pretrained.activations["1"]
62
- layer_2 = pretrained.activations["2"]
63
- layer_3 = pretrained.activations["3"]
64
- layer_4 = pretrained.activations["4"]
65
-
66
- layer_1 = pretrained.act_postprocess1[0:2](layer_1)
67
- layer_2 = pretrained.act_postprocess2[0:2](layer_2)
68
- layer_3 = pretrained.act_postprocess3[0:2](layer_3)
69
- layer_4 = pretrained.act_postprocess4[0:2](layer_4)
70
-
71
- unflatten = nn.Sequential(
72
- nn.Unflatten(
73
- 2,
74
- torch.Size(
75
- [
76
- h // pretrained.model.patch_size[1],
77
- w // pretrained.model.patch_size[0],
78
- ]
79
- ),
80
- )
81
- )
82
-
83
- if layer_1.ndim == 3:
84
- layer_1 = unflatten(layer_1)
85
- if layer_2.ndim == 3:
86
- layer_2 = unflatten(layer_2)
87
- if layer_3.ndim == 3:
88
- layer_3 = unflatten(layer_3)
89
- if layer_4.ndim == 3:
90
- layer_4 = unflatten(layer_4)
91
-
92
- layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
93
- layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
94
- layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
95
- layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
96
-
97
- return layer_1, layer_2, layer_3, layer_4
98
-
99
-
100
- def _resize_pos_embed(self, posemb, gs_h, gs_w):
101
- posemb_tok, posemb_grid = (
102
- posemb[:, : self.start_index],
103
- posemb[0, self.start_index :],
104
- )
105
-
106
- gs_old = int(math.sqrt(len(posemb_grid)))
107
-
108
- posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
109
- posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
110
- posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
111
-
112
- posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
113
-
114
- return posemb
115
-
116
-
117
- def forward_flex(self, x):
118
- b, c, h, w = x.shape
119
-
120
- pos_embed = self._resize_pos_embed(
121
- self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
122
- )
123
-
124
- B = x.shape[0]
125
-
126
- if hasattr(self.patch_embed, "backbone"):
127
- x = self.patch_embed.backbone(x)
128
- if isinstance(x, (list, tuple)):
129
- x = x[-1] # last feature if backbone outputs list/tuple of features
130
-
131
- x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
132
-
133
- if getattr(self, "dist_token", None) is not None:
134
- cls_tokens = self.cls_token.expand(
135
- B, -1, -1
136
- ) # stole cls_tokens impl from Phil Wang, thanks
137
- dist_token = self.dist_token.expand(B, -1, -1)
138
- x = torch.cat((cls_tokens, dist_token, x), dim=1)
139
- else:
140
- cls_tokens = self.cls_token.expand(
141
- B, -1, -1
142
- ) # stole cls_tokens impl from Phil Wang, thanks
143
- x = torch.cat((cls_tokens, x), dim=1)
144
-
145
- x = x + pos_embed
146
- x = self.pos_drop(x)
147
-
148
- for blk in self.blocks:
149
- x = blk(x)
150
-
151
- x = self.norm(x)
152
-
153
- return x
154
-
155
-
156
- activations = {}
157
-
158
-
159
- def get_activation(name):
160
- def hook(model, input, output):
161
- activations[name] = output
162
-
163
- return hook
164
-
165
-
166
- def get_readout_oper(vit_features, features, use_readout, start_index=1):
167
- if use_readout == "ignore":
168
- readout_oper = [Slice(start_index)] * len(features)
169
- elif use_readout == "add":
170
- readout_oper = [AddReadout(start_index)] * len(features)
171
- elif use_readout == "project":
172
- readout_oper = [
173
- ProjectReadout(vit_features, start_index) for out_feat in features
174
- ]
175
- else:
176
- assert (
177
- False
178
- ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
179
-
180
- return readout_oper
181
-
182
-
183
- def _make_vit_b16_backbone(
184
- model,
185
- features=[96, 192, 384, 768],
186
- size=[384, 384],
187
- hooks=[2, 5, 8, 11],
188
- vit_features=768,
189
- use_readout="ignore",
190
- start_index=1,
191
- ):
192
- pretrained = nn.Module()
193
-
194
- pretrained.model = model
195
- pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
196
- pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
197
- pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
198
- pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
199
-
200
- pretrained.activations = activations
201
-
202
- readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
203
-
204
- # 32, 48, 136, 384
205
- pretrained.act_postprocess1 = nn.Sequential(
206
- readout_oper[0],
207
- Transpose(1, 2),
208
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
209
- nn.Conv2d(
210
- in_channels=vit_features,
211
- out_channels=features[0],
212
- kernel_size=1,
213
- stride=1,
214
- padding=0,
215
- ),
216
- nn.ConvTranspose2d(
217
- in_channels=features[0],
218
- out_channels=features[0],
219
- kernel_size=4,
220
- stride=4,
221
- padding=0,
222
- bias=True,
223
- dilation=1,
224
- groups=1,
225
- ),
226
- )
227
-
228
- pretrained.act_postprocess2 = nn.Sequential(
229
- readout_oper[1],
230
- Transpose(1, 2),
231
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
232
- nn.Conv2d(
233
- in_channels=vit_features,
234
- out_channels=features[1],
235
- kernel_size=1,
236
- stride=1,
237
- padding=0,
238
- ),
239
- nn.ConvTranspose2d(
240
- in_channels=features[1],
241
- out_channels=features[1],
242
- kernel_size=2,
243
- stride=2,
244
- padding=0,
245
- bias=True,
246
- dilation=1,
247
- groups=1,
248
- ),
249
- )
250
-
251
- pretrained.act_postprocess3 = nn.Sequential(
252
- readout_oper[2],
253
- Transpose(1, 2),
254
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
255
- nn.Conv2d(
256
- in_channels=vit_features,
257
- out_channels=features[2],
258
- kernel_size=1,
259
- stride=1,
260
- padding=0,
261
- ),
262
- )
263
-
264
- pretrained.act_postprocess4 = nn.Sequential(
265
- readout_oper[3],
266
- Transpose(1, 2),
267
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
268
- nn.Conv2d(
269
- in_channels=vit_features,
270
- out_channels=features[3],
271
- kernel_size=1,
272
- stride=1,
273
- padding=0,
274
- ),
275
- nn.Conv2d(
276
- in_channels=features[3],
277
- out_channels=features[3],
278
- kernel_size=3,
279
- stride=2,
280
- padding=1,
281
- ),
282
- )
283
-
284
- pretrained.model.start_index = start_index
285
- pretrained.model.patch_size = [16, 16]
286
-
287
- # We inject this function into the VisionTransformer instances so that
288
- # we can use it with interpolated position embeddings without modifying the library source.
289
- pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
290
- pretrained.model._resize_pos_embed = types.MethodType(
291
- _resize_pos_embed, pretrained.model
292
- )
293
-
294
- return pretrained
295
-
296
-
297
- def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
298
- model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
299
-
300
- hooks = [5, 11, 17, 23] if hooks == None else hooks
301
- return _make_vit_b16_backbone(
302
- model,
303
- features=[256, 512, 1024, 1024],
304
- hooks=hooks,
305
- vit_features=1024,
306
- use_readout=use_readout,
307
- )
308
-
309
-
310
- def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
311
- model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
312
-
313
- hooks = [2, 5, 8, 11] if hooks == None else hooks
314
- return _make_vit_b16_backbone(
315
- model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
316
- )
317
-
318
-
319
- def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
320
- model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
321
-
322
- hooks = [2, 5, 8, 11] if hooks == None else hooks
323
- return _make_vit_b16_backbone(
324
- model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
325
- )
326
-
327
-
328
- def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
329
- model = timm.create_model(
330
- "vit_deit_base_distilled_patch16_384", pretrained=pretrained
331
- )
332
-
333
- hooks = [2, 5, 8, 11] if hooks == None else hooks
334
- return _make_vit_b16_backbone(
335
- model,
336
- features=[96, 192, 384, 768],
337
- hooks=hooks,
338
- use_readout=use_readout,
339
- start_index=2,
340
- )
341
-
342
-
343
- def _make_vit_b_rn50_backbone(
344
- model,
345
- features=[256, 512, 768, 768],
346
- size=[384, 384],
347
- hooks=[0, 1, 8, 11],
348
- vit_features=768,
349
- use_vit_only=False,
350
- use_readout="ignore",
351
- start_index=1,
352
- ):
353
- pretrained = nn.Module()
354
-
355
- pretrained.model = model
356
-
357
- if use_vit_only == True:
358
- pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
359
- pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
360
- else:
361
- pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
362
- get_activation("1")
363
- )
364
- pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
365
- get_activation("2")
366
- )
367
-
368
- pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
369
- pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
370
-
371
- pretrained.activations = activations
372
-
373
- readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
374
-
375
- if use_vit_only == True:
376
- pretrained.act_postprocess1 = nn.Sequential(
377
- readout_oper[0],
378
- Transpose(1, 2),
379
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
380
- nn.Conv2d(
381
- in_channels=vit_features,
382
- out_channels=features[0],
383
- kernel_size=1,
384
- stride=1,
385
- padding=0,
386
- ),
387
- nn.ConvTranspose2d(
388
- in_channels=features[0],
389
- out_channels=features[0],
390
- kernel_size=4,
391
- stride=4,
392
- padding=0,
393
- bias=True,
394
- dilation=1,
395
- groups=1,
396
- ),
397
- )
398
-
399
- pretrained.act_postprocess2 = nn.Sequential(
400
- readout_oper[1],
401
- Transpose(1, 2),
402
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
403
- nn.Conv2d(
404
- in_channels=vit_features,
405
- out_channels=features[1],
406
- kernel_size=1,
407
- stride=1,
408
- padding=0,
409
- ),
410
- nn.ConvTranspose2d(
411
- in_channels=features[1],
412
- out_channels=features[1],
413
- kernel_size=2,
414
- stride=2,
415
- padding=0,
416
- bias=True,
417
- dilation=1,
418
- groups=1,
419
- ),
420
- )
421
- else:
422
- pretrained.act_postprocess1 = nn.Sequential(
423
- nn.Identity(), nn.Identity(), nn.Identity()
424
- )
425
- pretrained.act_postprocess2 = nn.Sequential(
426
- nn.Identity(), nn.Identity(), nn.Identity()
427
- )
428
-
429
- pretrained.act_postprocess3 = nn.Sequential(
430
- readout_oper[2],
431
- Transpose(1, 2),
432
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
433
- nn.Conv2d(
434
- in_channels=vit_features,
435
- out_channels=features[2],
436
- kernel_size=1,
437
- stride=1,
438
- padding=0,
439
- ),
440
- )
441
-
442
- pretrained.act_postprocess4 = nn.Sequential(
443
- readout_oper[3],
444
- Transpose(1, 2),
445
- nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
446
- nn.Conv2d(
447
- in_channels=vit_features,
448
- out_channels=features[3],
449
- kernel_size=1,
450
- stride=1,
451
- padding=0,
452
- ),
453
- nn.Conv2d(
454
- in_channels=features[3],
455
- out_channels=features[3],
456
- kernel_size=3,
457
- stride=2,
458
- padding=1,
459
- ),
460
- )
461
-
462
- pretrained.model.start_index = start_index
463
- pretrained.model.patch_size = [16, 16]
464
-
465
- # We inject this function into the VisionTransformer instances so that
466
- # we can use it with interpolated position embeddings without modifying the library source.
467
- pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
468
-
469
- # We inject this function into the VisionTransformer instances so that
470
- # we can use it with interpolated position embeddings without modifying the library source.
471
- pretrained.model._resize_pos_embed = types.MethodType(
472
- _resize_pos_embed, pretrained.model
473
- )
474
-
475
- return pretrained
476
-
477
-
478
- def _make_pretrained_vitb_rn50_384(
479
- pretrained, use_readout="ignore", hooks=None, use_vit_only=False
480
- ):
481
- model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
482
-
483
- hooks = [0, 1, 8, 11] if hooks == None else hooks
484
- return _make_vit_b_rn50_backbone(
485
- model,
486
- features=[256, 512, 768, 768],
487
- size=[384, 384],
488
- hooks=hooks,
489
- use_vit_only=use_vit_only,
490
- use_readout=use_readout,
491
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/midas/utils.py DELETED
@@ -1,189 +0,0 @@
1
- """Utils for monoDepth."""
2
- import sys
3
- import re
4
- import numpy as np
5
- import cv2
6
- import torch
7
-
8
-
9
- def read_pfm(path):
10
- """Read pfm file.
11
-
12
- Args:
13
- path (str): path to file
14
-
15
- Returns:
16
- tuple: (data, scale)
17
- """
18
- with open(path, "rb") as file:
19
-
20
- color = None
21
- width = None
22
- height = None
23
- scale = None
24
- endian = None
25
-
26
- header = file.readline().rstrip()
27
- if header.decode("ascii") == "PF":
28
- color = True
29
- elif header.decode("ascii") == "Pf":
30
- color = False
31
- else:
32
- raise Exception("Not a PFM file: " + path)
33
-
34
- dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
35
- if dim_match:
36
- width, height = list(map(int, dim_match.groups()))
37
- else:
38
- raise Exception("Malformed PFM header.")
39
-
40
- scale = float(file.readline().decode("ascii").rstrip())
41
- if scale < 0:
42
- # little-endian
43
- endian = "<"
44
- scale = -scale
45
- else:
46
- # big-endian
47
- endian = ">"
48
-
49
- data = np.fromfile(file, endian + "f")
50
- shape = (height, width, 3) if color else (height, width)
51
-
52
- data = np.reshape(data, shape)
53
- data = np.flipud(data)
54
-
55
- return data, scale
56
-
57
-
58
- def write_pfm(path, image, scale=1):
59
- """Write pfm file.
60
-
61
- Args:
62
- path (str): pathto file
63
- image (array): data
64
- scale (int, optional): Scale. Defaults to 1.
65
- """
66
-
67
- with open(path, "wb") as file:
68
- color = None
69
-
70
- if image.dtype.name != "float32":
71
- raise Exception("Image dtype must be float32.")
72
-
73
- image = np.flipud(image)
74
-
75
- if len(image.shape) == 3 and image.shape[2] == 3: # color image
76
- color = True
77
- elif (
78
- len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
79
- ): # greyscale
80
- color = False
81
- else:
82
- raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
83
-
84
- file.write("PF\n" if color else "Pf\n".encode())
85
- file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
86
-
87
- endian = image.dtype.byteorder
88
-
89
- if endian == "<" or endian == "=" and sys.byteorder == "little":
90
- scale = -scale
91
-
92
- file.write("%f\n".encode() % scale)
93
-
94
- image.tofile(file)
95
-
96
-
97
- def read_image(path):
98
- """Read image and output RGB image (0-1).
99
-
100
- Args:
101
- path (str): path to file
102
-
103
- Returns:
104
- array: RGB image (0-1)
105
- """
106
- img = cv2.imread(path)
107
-
108
- if img.ndim == 2:
109
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
110
-
111
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
112
-
113
- return img
114
-
115
-
116
- def resize_image(img):
117
- """Resize image and make it fit for network.
118
-
119
- Args:
120
- img (array): image
121
-
122
- Returns:
123
- tensor: data ready for network
124
- """
125
- height_orig = img.shape[0]
126
- width_orig = img.shape[1]
127
-
128
- if width_orig > height_orig:
129
- scale = width_orig / 384
130
- else:
131
- scale = height_orig / 384
132
-
133
- height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
134
- width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
135
-
136
- img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
137
-
138
- img_resized = (
139
- torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
140
- )
141
- img_resized = img_resized.unsqueeze(0)
142
-
143
- return img_resized
144
-
145
-
146
- def resize_depth(depth, width, height):
147
- """Resize depth map and bring to CPU (numpy).
148
-
149
- Args:
150
- depth (tensor): depth
151
- width (int): image width
152
- height (int): image height
153
-
154
- Returns:
155
- array: processed depth
156
- """
157
- depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
158
-
159
- depth_resized = cv2.resize(
160
- depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
161
- )
162
-
163
- return depth_resized
164
-
165
- def write_depth(path, depth, bits=1):
166
- """Write depth map to pfm and png file.
167
-
168
- Args:
169
- path (str): filepath without extension
170
- depth (array): depth
171
- """
172
- write_pfm(path + ".pfm", depth.astype(np.float32))
173
-
174
- depth_min = depth.min()
175
- depth_max = depth.max()
176
-
177
- max_val = (2**(8*bits))-1
178
-
179
- if depth_max - depth_min > np.finfo("float").eps:
180
- out = max_val * (depth - depth_min) / (depth_max - depth_min)
181
- else:
182
- out = np.zeros(depth.shape, dtype=depth.type)
183
-
184
- if bits == 1:
185
- cv2.imwrite(path + ".png", out.astype("uint8"))
186
- elif bits == 2:
187
- cv2.imwrite(path + ".png", out.astype("uint16"))
188
-
189
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/util.py DELETED
@@ -1,197 +0,0 @@
1
- import importlib
2
-
3
- import torch
4
- from torch import optim
5
- import numpy as np
6
-
7
- from inspect import isfunction
8
- from PIL import Image, ImageDraw, ImageFont
9
-
10
-
11
- def log_txt_as_img(wh, xc, size=10):
12
- # wh a tuple of (width, height)
13
- # xc a list of captions to plot
14
- b = len(xc)
15
- txts = list()
16
- for bi in range(b):
17
- txt = Image.new("RGB", wh, color="white")
18
- draw = ImageDraw.Draw(txt)
19
- font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
20
- nc = int(40 * (wh[0] / 256))
21
- lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
22
-
23
- try:
24
- draw.text((0, 0), lines, fill="black", font=font)
25
- except UnicodeEncodeError:
26
- print("Cant encode string for logging. Skipping.")
27
-
28
- txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
29
- txts.append(txt)
30
- txts = np.stack(txts)
31
- txts = torch.tensor(txts)
32
- return txts
33
-
34
-
35
- def ismap(x):
36
- if not isinstance(x, torch.Tensor):
37
- return False
38
- return (len(x.shape) == 4) and (x.shape[1] > 3)
39
-
40
-
41
- def isimage(x):
42
- if not isinstance(x,torch.Tensor):
43
- return False
44
- return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
45
-
46
-
47
- def exists(x):
48
- return x is not None
49
-
50
-
51
- def default(val, d):
52
- if exists(val):
53
- return val
54
- return d() if isfunction(d) else d
55
-
56
-
57
- def mean_flat(tensor):
58
- """
59
- https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
60
- Take the mean over all non-batch dimensions.
61
- """
62
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
63
-
64
-
65
- def count_params(model, verbose=False):
66
- total_params = sum(p.numel() for p in model.parameters())
67
- if verbose:
68
- print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
69
- return total_params
70
-
71
-
72
- def instantiate_from_config(config):
73
- if not "target" in config:
74
- if config == '__is_first_stage__':
75
- return None
76
- elif config == "__is_unconditional__":
77
- return None
78
- raise KeyError("Expected key `target` to instantiate.")
79
- return get_obj_from_str(config["target"])(**config.get("params", dict()))
80
-
81
-
82
- def get_obj_from_str(string, reload=False):
83
- module, cls = string.rsplit(".", 1)
84
- if reload:
85
- module_imp = importlib.import_module(module)
86
- importlib.reload(module_imp)
87
- return getattr(importlib.import_module(module, package=None), cls)
88
-
89
-
90
- class AdamWwithEMAandWings(optim.Optimizer):
91
- # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
92
- def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
93
- weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
94
- ema_power=1., param_names=()):
95
- """AdamW that saves EMA versions of the parameters."""
96
- if not 0.0 <= lr:
97
- raise ValueError("Invalid learning rate: {}".format(lr))
98
- if not 0.0 <= eps:
99
- raise ValueError("Invalid epsilon value: {}".format(eps))
100
- if not 0.0 <= betas[0] < 1.0:
101
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
102
- if not 0.0 <= betas[1] < 1.0:
103
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
104
- if not 0.0 <= weight_decay:
105
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
106
- if not 0.0 <= ema_decay <= 1.0:
107
- raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
108
- defaults = dict(lr=lr, betas=betas, eps=eps,
109
- weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
110
- ema_power=ema_power, param_names=param_names)
111
- super().__init__(params, defaults)
112
-
113
- def __setstate__(self, state):
114
- super().__setstate__(state)
115
- for group in self.param_groups:
116
- group.setdefault('amsgrad', False)
117
-
118
- @torch.no_grad()
119
- def step(self, closure=None):
120
- """Performs a single optimization step.
121
- Args:
122
- closure (callable, optional): A closure that reevaluates the model
123
- and returns the loss.
124
- """
125
- loss = None
126
- if closure is not None:
127
- with torch.enable_grad():
128
- loss = closure()
129
-
130
- for group in self.param_groups:
131
- params_with_grad = []
132
- grads = []
133
- exp_avgs = []
134
- exp_avg_sqs = []
135
- ema_params_with_grad = []
136
- state_sums = []
137
- max_exp_avg_sqs = []
138
- state_steps = []
139
- amsgrad = group['amsgrad']
140
- beta1, beta2 = group['betas']
141
- ema_decay = group['ema_decay']
142
- ema_power = group['ema_power']
143
-
144
- for p in group['params']:
145
- if p.grad is None:
146
- continue
147
- params_with_grad.append(p)
148
- if p.grad.is_sparse:
149
- raise RuntimeError('AdamW does not support sparse gradients')
150
- grads.append(p.grad)
151
-
152
- state = self.state[p]
153
-
154
- # State initialization
155
- if len(state) == 0:
156
- state['step'] = 0
157
- # Exponential moving average of gradient values
158
- state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
159
- # Exponential moving average of squared gradient values
160
- state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
161
- if amsgrad:
162
- # Maintains max of all exp. moving avg. of sq. grad. values
163
- state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
164
- # Exponential moving average of parameter values
165
- state['param_exp_avg'] = p.detach().float().clone()
166
-
167
- exp_avgs.append(state['exp_avg'])
168
- exp_avg_sqs.append(state['exp_avg_sq'])
169
- ema_params_with_grad.append(state['param_exp_avg'])
170
-
171
- if amsgrad:
172
- max_exp_avg_sqs.append(state['max_exp_avg_sq'])
173
-
174
- # update the steps for each param group update
175
- state['step'] += 1
176
- # record the step after step update
177
- state_steps.append(state['step'])
178
-
179
- optim._functional.adamw(params_with_grad,
180
- grads,
181
- exp_avgs,
182
- exp_avg_sqs,
183
- max_exp_avg_sqs,
184
- state_steps,
185
- amsgrad=amsgrad,
186
- beta1=beta1,
187
- beta2=beta2,
188
- lr=group['lr'],
189
- weight_decay=group['weight_decay'],
190
- eps=group['eps'],
191
- maximize=False)
192
-
193
- cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
194
- for param, ema_param in zip(params_with_grad, ema_params_with_grad):
195
- ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
196
-
197
- return loss