File size: 8,485 Bytes
2296a5c
f1c2ba5
2296a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9739858
2296a5c
 
 
 
28eb7bc
2296a5c
 
635b7ee
2296a5c
 
 
 
20acb7f
2296a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""Provide a text query describing what you are looking for and get back out images with links!"""
"""This has been duplicated to show the new duplication feature demo"""
import argparse
import logging
import os
import wandb
import gradio as gr

import zipfile
import pickle
from pathlib import Path
from typing import List, Any, Dict
from PIL import Image
from pathlib import Path

from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer, util
from multilingual_clip import pt_multilingual_clip
import torch

from pathlib import Path
from typing import Callable, Dict, List, Tuple
from PIL.Image import Image

print(__file__)

os.environ["CUDA_VISIBLE_DEVICES"] = ""  # do not use GPU

logging.basicConfig(level=logging.INFO)
DEFAULT_APPLICATION_NAME = "fashion-aggregator"

APP_DIR = Path(__file__).resolve().parent  # what is the directory for this application?
FAVICON = APP_DIR / "t-shirt_1f455.png"  # path to a small image for display in browser tab and social media
README = APP_DIR / "README.md"  # path to an app readme file in HTML/markdown

DEFAULT_PORT = 11700

EMBEDDINGS_DIR = "artifacts/img-embeddings"
EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl")
RAW_PHOTOS_DIR = "artifacts/raw-photos"

# Download image embeddings and raw photos
wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4")  # os.getenv('wandb')
api = wandb.Api()
artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1")
artifact_embeddings.download(EMBEDDINGS_DIR)
artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1")
artifact_raw_photos.download("artifacts")

with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref:
    zip_ref.extractall(RAW_PHOTOS_DIR)


class TextEncoder:
    """Encodes the given text"""

    def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"):
        self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)

    @torch.no_grad()
    def encode(self, query: str) -> torch.Tensor:
        """Predict/infer text embedding for a given query."""
        query_emb = self.model.forward([query], self.tokenizer)
        return query_emb


class ImageEnoder:
    """Encodes the given image"""

    def __init__(self, model_path="clip-ViT-B-32"):
        self.model = SentenceTransformer(model_path)

    @torch.no_grad()
    def encode(self, image: Image) -> torch.Tensor:
        """Predict/infer text embedding for a given query."""
        image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False)
        return image_emb


class Retriever:
    """Retrieves relevant images for a given text embedding."""

    def __init__(self, image_embeddings_path=None):
        self.text_encoder = TextEncoder()
        self.image_encoder = ImageEnoder()

        with open(image_embeddings_path, "rb") as file:
            self.image_names, self.image_embeddings = pickle.load(file)
            self.image_names = [
                img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "")
                for img_name in self.image_names
            ]
        print("Images:", len(self.image_names))

    @torch.no_grad()
    def predict(self, text_query: str, k: int = 10) -> List[Any]:
        """Return top-k relevant items for a given embedding"""
        query_emb = self.text_encoder.encode(text_query)
        relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0]
        return relevant_images

    @torch.no_grad()
    def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]:
        """Return top-k relevant images for a given embedding"""
        images = self.predict(text_query, k)
        paths_and_scores = {"path": [], "score": []}
        for img in images:
            paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]]))
            paths_and_scores["score"].append(img["score"])
        return paths_and_scores


def main(args):
    predictor = PredictorBackend(url=args.model_url)
    frontend = make_frontend(predictor.run, flagging=args.flagging, gantry=args.gantry, app_name=args.application)
    frontend.launch(
        # server_name="0.0.0.0",  # make server accessible, binding all interfaces  # noqa: S104
        # server_port=args.port,  # set a port to bind to, failing if unavailable
        # share=False,  # should we create a (temporary) public link on https://gradio.app?
        # favicon_path=FAVICON,  # what icon should we display in the address bar?
    )

def make_frontend(
    fn: Callable[[Image], str], flagging: bool = False, gantry: bool = False, app_name: str = "fashion-aggregator", theme = "Nymbo/Alyx_Theme"
):
    """Creates a gradio.Interface frontend for text to image search function."""

    allow_flagging = "never"
    
    # build a basic browser interface to a Python function
    frontend = gr.Interface(
        theme="Nymbo/Alyx_Theme",
        fn=fn,  # which Python function are we interacting with?
        outputs=gr.Gallery(label="Relevant Items"),
        # what input widgets does it need? we configure an image widget
        inputs=gr.components.Textbox(label="Item Description"),
        title="Fashion Finder",  # what should we display at the top of the page?
        thumbnail=FAVICON,  # what should we display when the link is shared, e.g. on social media?
        description=__doc__,  # what should we display just above the interface?
        cache_examples=False,  # should we cache those inputs for faster inference? slows down start
        allow_flagging=allow_flagging,  # should we show users the option to "flag" outputs?
        flagging_options=["incorrect", "offensive", "other"],  # what options do users have for feedback?
    )
    return frontend


class PredictorBackend:
    """Interface to a backend that serves predictions.

    To communicate with a backend accessible via a URL, provide the url kwarg.

    Otherwise, runs a predictor locally.
    """

    def __init__(self, url=None):
        if url is not None:
            self.url = url
            self._predict = self._predict_from_endpoint
        else:
            model = Retriever(image_embeddings_path=EMBEDDINGS_FILE)
            self._predict = model.predict
            self._search_images = model.search_images

    def run(self, text: str):
        pred, metrics = self._predict_with_metrics(text)
        self._log_inference(pred, metrics)
        return pred

    def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]:
        paths_and_scores = self._search_images(text)
        metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])}
        return paths_and_scores["path"], metrics

    def _log_inference(self, pred, metrics):
        for key, value in metrics.items():
            logging.info(f"METRIC {key} {value}")
        logging.info(f"PRED >begin\n{pred}\nPRED >end")


def _make_parser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_url",
        default=None,
        type=str,
        help="Identifies a URL to which to send image data. Data is base64-encoded, converted to a utf-8 string, and then set via a POST request as JSON with the key 'image'. Default is None, which instead sends the data to a model running locally.",
    )
    parser.add_argument(
        "--port",
        default=DEFAULT_PORT,
        type=int,
        help=f"Port on which to expose this server. Default is {DEFAULT_PORT}.",
    )
    parser.add_argument(
        "--flagging",
        action="store_true",
        help="Pass this flag to allow users to 'flag' model behavior and provide feedback.",
    )
    parser.add_argument(
        "--gantry",
        action="store_true",
        help="Pass --flagging and this flag to log user feedback to Gantry. Requires GANTRY_API_KEY to be defined as an environment variable.",
    )
    parser.add_argument(
        "--application",
        default=DEFAULT_APPLICATION_NAME,
        type=str,
        help=f"Name of the Gantry application to which feedback should be logged, if --gantry and --flagging are passed. Default is {DEFAULT_APPLICATION_NAME}.",
    )
    return parser


if __name__ == "__main__":
    parser = _make_parser()
    args = parser.parse_args()
    main(args)