Spaces:
Sleeping
Sleeping
"""Provide a text query describing what you are looking for and get back out images with links!""" | |
"""This has been duplicated to show the new duplication feature demo""" | |
import argparse | |
import logging | |
import os | |
import wandb | |
import gradio as gr | |
import zipfile | |
import pickle | |
from pathlib import Path | |
from typing import List, Any, Dict | |
from PIL import Image | |
from pathlib import Path | |
from transformers import AutoTokenizer | |
from sentence_transformers import SentenceTransformer, util | |
from multilingual_clip import pt_multilingual_clip | |
import torch | |
from pathlib import Path | |
from typing import Callable, Dict, List, Tuple | |
from PIL.Image import Image | |
print(__file__) | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU | |
logging.basicConfig(level=logging.INFO) | |
DEFAULT_APPLICATION_NAME = "fashion-aggregator" | |
APP_DIR = Path(__file__).resolve().parent # what is the directory for this application? | |
FAVICON = APP_DIR / "t-shirt_1f455.png" # path to a small image for display in browser tab and social media | |
README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown | |
DEFAULT_PORT = 11700 | |
EMBEDDINGS_DIR = "artifacts/img-embeddings" | |
EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl") | |
RAW_PHOTOS_DIR = "artifacts/raw-photos" | |
# Download image embeddings and raw photos | |
wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4") # os.getenv('wandb') | |
api = wandb.Api() | |
artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1") | |
artifact_embeddings.download(EMBEDDINGS_DIR) | |
artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1") | |
artifact_raw_photos.download("artifacts") | |
with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref: | |
zip_ref.extractall(RAW_PHOTOS_DIR) | |
class TextEncoder: | |
"""Encodes the given text""" | |
def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"): | |
self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
def encode(self, query: str) -> torch.Tensor: | |
"""Predict/infer text embedding for a given query.""" | |
query_emb = self.model.forward([query], self.tokenizer) | |
return query_emb | |
class ImageEnoder: | |
"""Encodes the given image""" | |
def __init__(self, model_path="clip-ViT-B-32"): | |
self.model = SentenceTransformer(model_path) | |
def encode(self, image: Image) -> torch.Tensor: | |
"""Predict/infer text embedding for a given query.""" | |
image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False) | |
return image_emb | |
class Retriever: | |
"""Retrieves relevant images for a given text embedding.""" | |
def __init__(self, image_embeddings_path=None): | |
self.text_encoder = TextEncoder() | |
self.image_encoder = ImageEnoder() | |
with open(image_embeddings_path, "rb") as file: | |
self.image_names, self.image_embeddings = pickle.load(file) | |
self.image_names = [ | |
img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "") | |
for img_name in self.image_names | |
] | |
print("Images:", len(self.image_names)) | |
def predict(self, text_query: str, k: int = 10) -> List[Any]: | |
"""Return top-k relevant items for a given embedding""" | |
query_emb = self.text_encoder.encode(text_query) | |
relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0] | |
return relevant_images | |
def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]: | |
"""Return top-k relevant images for a given embedding""" | |
images = self.predict(text_query, k) | |
paths_and_scores = {"path": [], "score": []} | |
for img in images: | |
paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]])) | |
paths_and_scores["score"].append(img["score"]) | |
return paths_and_scores | |
def main(args): | |
predictor = PredictorBackend(url=args.model_url) | |
frontend = make_frontend(predictor.run, flagging=args.flagging, gantry=args.gantry, app_name=args.application) | |
frontend.launch( | |
# server_name="0.0.0.0", # make server accessible, binding all interfaces # noqa: S104 | |
# server_port=args.port, # set a port to bind to, failing if unavailable | |
# share=False, # should we create a (temporary) public link on https://gradio.app? | |
# favicon_path=FAVICON, # what icon should we display in the address bar? | |
) | |
def make_frontend( | |
fn: Callable[[Image], str], flagging: bool = False, gantry: bool = False, app_name: str = "fashion-aggregator", theme = "Nymbo/Alyx_Theme" | |
): | |
"""Creates a gradio.Interface frontend for text to image search function.""" | |
allow_flagging = "never" | |
# build a basic browser interface to a Python function | |
frontend = gr.Interface( | |
theme="Nymbo/Alyx_Theme", | |
fn=fn, # which Python function are we interacting with? | |
outputs=gr.Gallery(label="Relevant Items"), | |
# what input widgets does it need? we configure an image widget | |
inputs=gr.components.Textbox(label="Item Description"), | |
title="Fashion Finder", # what should we display at the top of the page? | |
thumbnail=FAVICON, # what should we display when the link is shared, e.g. on social media? | |
description=__doc__, # what should we display just above the interface? | |
cache_examples=False, # should we cache those inputs for faster inference? slows down start | |
allow_flagging=allow_flagging, # should we show users the option to "flag" outputs? | |
flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback? | |
) | |
return frontend | |
class PredictorBackend: | |
"""Interface to a backend that serves predictions. | |
To communicate with a backend accessible via a URL, provide the url kwarg. | |
Otherwise, runs a predictor locally. | |
""" | |
def __init__(self, url=None): | |
if url is not None: | |
self.url = url | |
self._predict = self._predict_from_endpoint | |
else: | |
model = Retriever(image_embeddings_path=EMBEDDINGS_FILE) | |
self._predict = model.predict | |
self._search_images = model.search_images | |
def run(self, text: str): | |
pred, metrics = self._predict_with_metrics(text) | |
self._log_inference(pred, metrics) | |
return pred | |
def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]: | |
paths_and_scores = self._search_images(text) | |
metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])} | |
return paths_and_scores["path"], metrics | |
def _log_inference(self, pred, metrics): | |
for key, value in metrics.items(): | |
logging.info(f"METRIC {key} {value}") | |
logging.info(f"PRED >begin\n{pred}\nPRED >end") | |
def _make_parser(): | |
parser = argparse.ArgumentParser(description=__doc__) | |
parser.add_argument( | |
"--model_url", | |
default=None, | |
type=str, | |
help="Identifies a URL to which to send image data. Data is base64-encoded, converted to a utf-8 string, and then set via a POST request as JSON with the key 'image'. Default is None, which instead sends the data to a model running locally.", | |
) | |
parser.add_argument( | |
"--port", | |
default=DEFAULT_PORT, | |
type=int, | |
help=f"Port on which to expose this server. Default is {DEFAULT_PORT}.", | |
) | |
parser.add_argument( | |
"--flagging", | |
action="store_true", | |
help="Pass this flag to allow users to 'flag' model behavior and provide feedback.", | |
) | |
parser.add_argument( | |
"--gantry", | |
action="store_true", | |
help="Pass --flagging and this flag to log user feedback to Gantry. Requires GANTRY_API_KEY to be defined as an environment variable.", | |
) | |
parser.add_argument( | |
"--application", | |
default=DEFAULT_APPLICATION_NAME, | |
type=str, | |
help=f"Name of the Gantry application to which feedback should be logged, if --gantry and --flagging are passed. Default is {DEFAULT_APPLICATION_NAME}.", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = _make_parser() | |
args = parser.parse_args() | |
main(args) | |