Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from tqdm import tqdm | |
import gradio as gr | |
model = torch.hub.load('pytorch/vision:v0.10.0', 'vgg19', pretrained=True) | |
feature_layers = [0,5,10,19,28] | |
class StyleTransfer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model = model | |
self.feature_layers = feature_layers | |
self.avg_pool = nn.AvgPool2d(kernel_size=2,stride=2,padding=0,ceil_mode=False) | |
def forward(self,x): | |
style_features = [] | |
for i,layer in enumerate(self.model.features[:29]): | |
if isinstance(layer,nn.MaxPool2d): | |
x = self.avg_pool(x) | |
continue | |
x = layer(x) | |
if i in self.feature_layers: | |
style_features.append(x) | |
if i == 23: | |
content_features = x | |
return style_features,content_features | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def image_merger(content, style,beta=10,device=device): | |
size = 300 | |
alpha = 1 | |
beta *= 1000 | |
content = Image.fromarray(content) | |
style = Image.fromarray(style) | |
t = transforms.Compose( | |
[ | |
transforms.Resize((size,size)), | |
transforms.ToTensor(), | |
] | |
) | |
style = t(style).unsqueeze(0).to(device) | |
content = t(content).unsqueeze(0).to(device) | |
generated = content.clone().to(device).requires_grad_(True) | |
generator = StyleTransfer().to(device).eval() | |
opt = torch.optim.Adam([generated],lr=0.06) | |
scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.9) # Learning rate scheduler | |
num_epochs = 30 if device != "cuda" else 100 | |
style_features,_ = generator(style) | |
_,content_features = generator(content) | |
loop = tqdm(range(num_epochs),leave=False) | |
for i in loop: | |
content_loss = 0 | |
style_loss = 0 | |
generated_style_features,generated_content_features = generator(generated) | |
content_loss = 0.5 * torch.mean((content_features - generated_content_features) ** 2) | |
for style_feature,generated_style_feature in zip(style_features,generated_style_features): | |
b,c,h,w = style_feature.shape | |
s1 = style_feature.view(c,h*w) @ style_feature.view(c,h*w).T | |
s2 = generated_style_feature.view(c,h*w) @ generated_style_feature.view(c,h*w).T | |
layer_style_loss = torch.mean((s2 - s1)**2)/(4 *(c) * (h*w)) | |
style_loss += layer_style_loss | |
total_loss = alpha * content_loss + beta * style_loss | |
loop.set_postfix(loss=total_loss.item()) | |
opt.zero_grad() | |
total_loss.backward(retain_graph=True) | |
opt.step() | |
scheduler.step() | |
if total_loss < 500 and device!='cuda': | |
break | |
print(total_loss.item()) | |
img = np.array(generated.cpu().detach().squeeze(0).permute(1,2,0)) | |
img = np.clip(img,0,1) * 255 | |
img = Image.fromarray(img.astype(np.uint8)) | |
return img | |
iface = gr.Interface( | |
fn=image_merger, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Image(label="Style Image"), | |
gr.Slider(label="Style strength", minimum=10, maximum=100, step=10), | |
], | |
outputs=gr.Image(label="Generated Image"), | |
title="Neural Style Transfer", | |
description="Upload your desired input image and style image. Adjust the 'Style strength' slider to control the intensity of the style transfer. The generated image will showcase your input content with the stylistic elements of the chosen style image. Generation can take upto two minutes", | |
) | |
iface.launch() |