Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,253 Bytes
0203722 5d2baa5 0203722 6210885 0203722 4622e54 0203722 788a499 1fa352f 0203722 6210885 0203722 5d2baa5 0203722 6210885 5d2baa5 0203722 292c2fc 0203722 0b57247 4622e54 0b57247 4622e54 0b57247 4622e54 0b57247 4622e54 0b57247 4622e54 a67873a 0203722 292c2fc 4622e54 0b57247 4b8ea71 2c71769 0203722 788a499 0203722 4622e54 2c71769 4622e54 0203722 292c2fc 4622e54 0b57247 0203722 f52a712 0203722 292c2fc 310c080 4622e54 788a499 4622e54 0203722 4622e54 3daaddd 0203722 3daaddd 4622e54 de943de 4622e54 3daaddd 4622e54 0203722 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 0203722 4622e54 310c080 4622e54 3daaddd 4622e54 0203722 4622e54 3daaddd 4622e54 3daaddd 310c080 3daaddd 0203722 4622e54 310c080 4622e54 0203722 4622e54 0203722 4622e54 0322abf 4622e54 0203722 4622e54 310c080 4622e54 0203722 97bf543 0203722 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 310c080 4622e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
import os
import requests
import re
from num2words import num2words
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from edit_utils_en import parse_edit_en
from edit_utils_en import parse_tts_en
from edit_utils_zh import parse_edit_zh
from edit_utils_zh import parse_tts_zh
from inference_scale import inference_one_sample
import librosa
import soundfile as sf
from models import ssr
import io
import numpy as np
import random
import uuid
import opencc
import spaces
import nltk
nltk.download('punkt')
DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
os.makedirs(MODELS_PATH, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
# download wmencodec
url = "https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th"
filename = os.path.join(MODELS_PATH, "wmencodec.th")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(filename, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded to: {filename}")
# download english model
url = "https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/English.pth"
filename = os.path.join(MODELS_PATH, "English.th")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(filename, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded to: {filename}")
# download mandarin model
url = "https://huggingface.co/westbrook/SSR-Speech-Mandarin/resolve/main/Mandarin.pth"
filename = os.path.join(MODELS_PATH, "Mandarin.pth")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(filename, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded to: {filename}")
def get_random_string():
return "".join(str(uuid.uuid4()).split("-"))
@spaces.GPU
def seed_everything(seed):
if seed != -1:
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_mask_interval(transcribe_state, word_span):
print(transcribe_state)
seg_num = len(transcribe_state['segments'])
data = []
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
data.append([item['start'], item['end'], item['word']])
s, e = word_span[0], word_span[1]
assert s <= e, f"s:{s}, e:{e}"
assert s >= 0, f"s:{s}"
assert e <= len(data), f"e:{e}"
if e == 0: # start
start = 0.
end = float(data[0][0])
elif s == len(data): # end
start = float(data[-1][1])
end = float(data[-1][1]) # don't know the end yet
elif s == e: # insert
start = float(data[s-1][1])
end = float(data[s][0])
else:
start = float(data[s-1][1]) if s > 0 else float(data[s][0])
end = float(data[e][0]) if e < len(data) else float(data[-1][1])
return (start, end)
def traditional_to_simplified(segments):
converter = opencc.OpenCC('t2s')
seg_num = len(segments)
for i in range(seg_num):
words = segments[i]['words']
for j in range(len(words)):
segments[i]['words'][j]['word'] = converter.convert(segments[i]['words'][j]['word'])
segments[i]['text'] = converter.convert(segments[i]['text'])
return segments
from whisperx import load_align_model, load_model, load_audio
from whisperx import align as align_func
# Load models
text_tokenizer_en = TextTokenizer(backend="espeak")
text_tokenizer_zh = TextTokenizer(backend="espeak", language='cmn')
ssrspeech_fn_en = f"{MODELS_PATH}/English.pth"
ckpt_en = torch.load(ssrspeech_fn_en)
model_en = ssr.SSR_Speech(ckpt_en["config"])
model_en.load_state_dict(ckpt_en["model"])
config_en = model_en.args
phn2num_en = ckpt_en["phn2num"]
model_en.to(device)
ssrspeech_fn_zh = f"{MODELS_PATH}/Mandarin.pth"
ckpt_zh = torch.load(ssrspeech_fn_zh)
model_zh = ssr.SSR_Speech(ckpt_zh["config"])
model_zh.load_state_dict(ckpt_zh["model"])
config_zh = model_zh.args
phn2num_zh = ckpt_zh["phn2num"]
model_zh.to(device)
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
ssrspeech_model_en = {
"config": config_en,
"phn2num": phn2num_en,
"model": model_en,
"text_tokenizer": text_tokenizer_en,
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
}
ssrspeech_model_zh = {
"config": config_zh,
"phn2num": phn2num_zh,
"model": model_zh,
"text_tokenizer": text_tokenizer_zh,
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
}
def get_transcribe_state(segments):
transcript = " ".join([segment["text"] for segment in segments])
transcript = transcript[1:] if transcript[0] == " " else transcript
return {
"segments": segments,
"transcript": transcript,
}
@spaces.GPU
def transcribe_en(audio_path):
language = "en"
transcribe_model_name = "base.en"
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
for segment in segments:
segment['text'] = replace_numbers_with_words(segment['text'])
_, segments = align_en(segments, audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
return [
state["transcript"], state['segments'],
state, success_message
]
@spaces.GPU
def transcribe_zh(audio_path):
language = "zh"
transcribe_model_name = "base"
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
for segment in segments:
segment['text'] = replace_numbers_with_words(segment['text'])
_, segments = align_zh(segments, audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
return [
state["transcript"], state['segments'],
state, success_message
]
@spaces.GPU
def align_en(segments, audio_path):
language = "en"
align_model, metadata = load_align_model(language_code=language, device=device)
audio = load_audio(audio_path)
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
state = get_transcribe_state(segments)
return state, segments
@spaces.GPU
def align_zh(segments, audio_path):
language = "zh"
align_model, metadata = load_align_model(language_code=language, device=device)
audio = load_audio(audio_path)
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
state = get_transcribe_state(segments)
return state, segments
def get_output_audio(audio_tensors, codec_audio_sr):
result = torch.cat(audio_tensors, 1)
buffer = io.BytesIO()
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
buffer.seek(0)
return buffer.read()
def replace_numbers_with_words(sentence):
sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers
def replace_with_words(match):
num = match.group(0)
try:
return num2words(num) # Convert numbers to words
except:
return num # In case num2words fails (unlikely with digits but just to be safe)
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
@spaces.GPU
def run_edit_en(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
audio_path, original_transcript, transcript):
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
top_p = 0.8
temperature = 1
kvcache = 1
stop_repetition = 2
aug_text = True if aug_text == 1 else False
seed_everything(seed)
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state,_ = align_en(segments, audio_path)
print(orig_transcript)
print(target_transcript)
operations, orig_spans = parse_edit_en(orig_transcript, target_transcript)
print(operations)
print("orig_spans: ", orig_spans)
if len(orig_spans) > 3:
raise gr.Error("Current model only supports maximum 3 editings")
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
def combine_spans(spans, threshold=0.2):
spans.sort(key=lambda x: x[0])
combined_spans = []
current_span = spans[0]
for i in range(1, len(spans)):
next_span = spans[i]
if current_span[1] >= next_span[0] - threshold:
current_span[1] = max(current_span[1], next_span[1])
else:
combined_spans.append(current_span)
current_span = next_span
combined_spans.append(current_span)
return combined_spans
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
morphed_span = combine_spans(morphed_span, threshold=0.2)
print("morphed_spans: ", morphed_span)
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
new_audio = inference_one_sample(
ssrspeech_model_en["model"],
ssrspeech_model_en["config"],
ssrspeech_model_en["phn2num"],
ssrspeech_model_en["text_tokenizer"],
ssrspeech_model_en["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, cfg_stride, aug_text, False, True, False,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
@spaces.GPU
def run_tts_en(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
audio_path, original_transcript, transcript):
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
top_p = 0.8
temperature = 1
kvcache = 1
stop_repetition = 2
aug_text = True if aug_text == 1 else False
seed_everything(seed)
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state,_ = align_en(segments, audio_path)
print(orig_transcript)
print(target_transcript)
info = torchaudio.info(audio_path)
duration = info.num_frames / info.sample_rate
cut_length = duration
# Cut long audio for tts
if duration > prompt_length:
seg_num = len(transcribe_state['segments'])
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
if item['end'] >= prompt_length:
cut_length = min(item['end'], cut_length)
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
sf.write(audio_path, audio, 16000)
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state,_ = align_en(segments, audio_path)
print(orig_transcript)
target_transcript_copy = target_transcript # for tts cut out
target_transcript_copy = target_transcript_copy.split(' ')[0]
target_transcript = orig_transcript + ' ' + target_transcript
print(target_transcript)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
morphed_span = [(audio_dur, audio_dur)] # in seconds
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
print("mask_interval: ", mask_interval)
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
new_audio = inference_one_sample(
ssrspeech_model_en["model"],
ssrspeech_model_en["config"],
ssrspeech_model_en["phn2num"],
ssrspeech_model_en["text_tokenizer"],
ssrspeech_model_en["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, cfg_stride, aug_text, False, True, True,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
[new_transcript, new_segments, _, _] = transcribe_en(audio_path)
transcribe_state,_ = align_en(new_segments, audio_path)
tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
tmp2 = target_transcript_copy.lower()
if tmp1 == tmp2:
offset = transcribe_state['segments'][0]['words'][0]['start']
else:
offset = transcribe_state['segments'][0]['words'][1]['start']
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
@spaces.GPU
def run_edit_zh(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
audio_path, original_transcript, transcript):
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
top_p = 0.8
temperature = 1
kvcache = 1
stop_repetition = 2
aug_text = True if aug_text == 1 else False
seed_everything(seed)
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _] = transcribe_zh(audio_path)
converter = opencc.OpenCC('t2s')
orig_transcript = converter.convert(orig_transcript)
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
print(orig_transcript)
print(target_transcript)
operations, orig_spans = parse_edit_zh(orig_transcript, target_transcript)
print(operations)
print("orig_spans: ", orig_spans)
if len(orig_spans) > 3:
raise gr.Error("Current model only supports maximum 3 editings")
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
def combine_spans(spans, threshold=0.2):
spans.sort(key=lambda x: x[0])
combined_spans = []
current_span = spans[0]
for i in range(1, len(spans)):
next_span = spans[i]
if current_span[1] >= next_span[0] - threshold:
current_span[1] = max(current_span[1], next_span[1])
else:
combined_spans.append(current_span)
current_span = next_span
combined_spans.append(current_span)
return combined_spans
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
morphed_span = combine_spans(morphed_span, threshold=0.2)
print("morphed_spans: ", morphed_span)
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
new_audio = inference_one_sample(
ssrspeech_model_zh["model"],
ssrspeech_model_zh["config"],
ssrspeech_model_zh["phn2num"],
ssrspeech_model_zh["text_tokenizer"],
ssrspeech_model_zh["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, cfg_stride, aug_text, False, True, False,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
@spaces.GPU
def run_tts_zh(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
audio_path, original_transcript, transcript):
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
top_p = 0.8
temperature = 1
kvcache = 1
stop_repetition = 2
aug_text = True if aug_text == 1 else False
seed_everything(seed)
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _] = transcribe_zh(audio_path)
converter = opencc.OpenCC('t2s')
orig_transcript = converter.convert(orig_transcript)
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
print(orig_transcript)
print(target_transcript)
info = torchaudio.info(audio_path)
duration = info.num_frames / info.sample_rate
cut_length = duration
# Cut long audio for tts
if duration > prompt_length:
seg_num = len(transcribe_state['segments'])
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
if item['end'] >= prompt_length:
cut_length = min(item['end'], cut_length)
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
sf.write(audio_path, audio, 16000)
[orig_transcript, segments, _] = transcribe_zh(audio_path)
converter = opencc.OpenCC('t2s')
orig_transcript = converter.convert(orig_transcript)
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
print(orig_transcript)
target_transcript_copy = target_transcript # for tts cut out
target_transcript_copy = target_transcript_copy[0]
target_transcript = orig_transcript + target_transcript
print(target_transcript)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
morphed_span = [(audio_dur, audio_dur)] # in seconds
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
print("mask_interval: ", mask_interval)
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
new_audio = inference_one_sample(
ssrspeech_model_zh["model"],
ssrspeech_model_zh["config"],
ssrspeech_model_zh["phn2num"],
ssrspeech_model_zh["text_tokenizer"],
ssrspeech_model_zh["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, cfg_stride, aug_text, False, True, True,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
[new_transcript, new_segments, _] = transcribe_zh(audio_path)
transcribe_state = align_zh(traditional_to_simplified(new_segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
tmp1 = transcribe_state['segments'][0]['words'][0]['word']
tmp2 = target_transcript_copy
if tmp1 == tmp2:
offset = transcribe_state['segments'][0]['words'][0]['start']
else:
offset = transcribe_state['segments'][0]['words'][1]['start']
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Ssrspeech gradio app.")
parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory")
parser.add_argument("--port", default=7860, type=int, help="App port")
parser.add_argument("--share", action="store_true", help="Launch with public url")
os.environ["USER"] = os.getenv("USER", "user")
args = parser.parse_args()
DEMO_PATH = args.demo_path
TMP_PATH = args.tmp_path
MODELS_PATH = args.models_path
# app = get_app()
# app.queue().launch(share=args.share, server_port=args.port)
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# SSR-Speech: High-quality Speech Editor and Text-to-Speech Synthesizer
Generate and edit speech from text. Adjust advanced settings for more control.
Learn more about 🚀**SSR-Speech** on the [SSR-Speech Homepage](https://wanghelin1997.github.io/SSR-Speech-Demo/).
""")
# Tabs for Generate and Edit
with gr.Tab("English Speech Editing"):
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use classifer-free guidance, change if you don't like the results")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
cfg_stride = gr.Number(label="cfg_stride", value=5,
info="cfg stride, 5 is a good value for English, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
success_output = gr.HTML()
semgents = gr.State() # not used
state = gr.State() # not used
transcribe_btn.click(fn=transcribe_en,
inputs=[input_audio],
outputs=[original_transcript, semgents, state, success_output])
run_btn.click(fn=run_edit_en,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output])
transcript.submit(fn=run_edit_en,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output]
)
with gr.Tab("English TTS"):
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use classifer-free guidance, change if you don't like the results")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
cfg_stride = gr.Number(label="cfg_stride", value=5,
info="cfg stride, 5 is a good value for English, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
success_output = gr.HTML()
semgents = gr.State() # not used
state = gr.State() # not used
transcribe_btn.click(fn=transcribe_en,
inputs=[input_audio],
outputs=[original_transcript, semgents, state, success_output])
run_btn.click(fn=run_tts_en,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output])
transcript.submit(fn=run_tts_en,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output]
)
with gr.Tab("Mandarin Speech Editing"):
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use classifer-free guidance, change if you don't like the results")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
cfg_stride = gr.Number(label="cfg_stride", value=1,
info="cfg stride, 1 is a good value for Mandarin, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
success_output = gr.HTML()
semgents = gr.State() # not used
state = gr.State() # not used
transcribe_btn.click(fn=transcribe_zh,
inputs=[input_audio],
outputs=[original_transcript, semgents, state, success_output])
run_btn.click(fn=run_edit_zh,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output])
transcript.submit(fn=run_edit_zh,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output]
)
with gr.Tab("Mandarin TTS"):
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use classifer-free guidance, change if you don't like the results")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
cfg_stride = gr.Number(label="cfg_stride", value=1,
info="cfg stride, 1 is a good value for Mandarin, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
success_output = gr.HTML()
semgents = gr.State() # not used
state = gr.State() # not used
transcribe_btn.click(fn=transcribe_zh,
inputs=[input_audio],
outputs=[original_transcript, semgents, state, success_output])
run_btn.click(fn=run_tts_zh,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output])
transcript.submit(fn=run_tts_zh,
inputs=[
seed, sub_amount,
aug_text, cfg_coef, cfg_stride, prompt_length,
input_audio, original_transcript, transcript,
],
outputs=[output_audio, success_output]
)
# Launch the Gradio demo
demo.launch() |