SSR-Speech / app.py
OpenSound's picture
Update app.py
54f231c
raw
history blame
21.5 kB
import os
import re
from num2words import num2words
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from edit_utils_zh import parse_edit_zh
from edit_utils_en import parse_edit_en
from edit_utils_zh import parse_tts_zh
from edit_utils_en import parse_tts_en
from inference_scale import inference_one_sample
import librosa
import soundfile as sf
from models import ssr
import io
import numpy as np
import random
import uuid
import opencc
import spaces
import nltk
nltk.download('punkt')
DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
device = "cuda" if torch.cuda.is_available() else "cpu"
transcribe_model, align_model, ssrspeech_model = None, None, None
def get_random_string():
return "".join(str(uuid.uuid4()).split("-"))
def traditional_to_simplified(segments):
converter = opencc.OpenCC('t2s')
seg_num = len(segments)
for i in range(seg_num):
words = segments[i]['words']
for j in range(len(words)):
segments[i]['words'][j]['word'] = converter.convert(segments[i]['words'][j]['word'])
segments[i]['text'] = converter.convert(segments[i]['text'])
return segments
@spaces.GPU
def seed_everything(seed):
if seed != -1:
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_mask_interval(transcribe_state, word_span):
print(transcribe_state)
seg_num = len(transcribe_state['segments'])
data = []
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
data.append([item['start'], item['end'], item['word']])
s, e = word_span[0], word_span[1]
assert s <= e, f"s:{s}, e:{e}"
assert s >= 0, f"s:{s}"
assert e <= len(data), f"e:{e}"
if e == 0: # start
start = 0.
end = float(data[0][0])
elif s == len(data): # end
start = float(data[-1][1])
end = float(data[-1][1]) # don't know the end yet
elif s == e: # insert
start = float(data[s-1][1])
end = float(data[s][0])
else:
start = float(data[s-1][1]) if s > 0 else float(data[s][0])
end = float(data[e][0]) if e < len(data) else float(data[-1][1])
return (start, end)
@spaces.GPU
class WhisperxAlignModel:
def __init__(self, language):
from whisperx import load_align_model
self.model, self.metadata = load_align_model(language_code=language, device=device)
def align(self, segments, audio_path):
from whisperx import align, load_audio
audio = load_audio(audio_path)
return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"]
@spaces.GPU
class WhisperModel:
def __init__(self, model_name, language):
from whisper import load_model
self.model = load_model(model_name, device, language=language)
from whisper.tokenizer import get_tokenizer
tokenizer = get_tokenizer(multilingual=False, language=language)
self.supress_tokens = [-1] + [
i
for i in range(tokenizer.eot)
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
]
def transcribe(self, audio_path):
return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"]
@spaces.GPU
class WhisperxModel:
def __init__(self, model_name, align_model, language):
from whisperx import load_model
self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
self.align_model = align_model
def transcribe(self, audio_path):
segments = self.model.transcribe(audio_path, batch_size=8)["segments"]
for segment in segments:
segment['text'] = replace_numbers_with_words(segment['text'])
return self.align_model.align(segments, audio_path)
@spaces.GPU
def load_models(ssrspeech_model_name):
global transcribe_model, align_model, ssrspeech_model
alignment_model_name = "whisperX"
whisper_backend_name = "whisperX"
if ssrspeech_model_name == "English":
ssrspeech_model_name = "English"
text_tokenizer = TextTokenizer(backend="espeak")
language = "en"
transcribe_model_name = "base.en"
elif ssrspeech_model_name == "Mandarin":
ssrspeech_model_name = "Mandarin"
text_tokenizer = TextTokenizer(backend="espeak", language='cmn')
language = "zh"
transcribe_model_name = "base"
align_model = WhisperxAlignModel(language)
transcribe_model = WhisperxModel(transcribe_model_name, align_model, language)
ssrspeech_fn = f"{MODELS_PATH}/{ssrspeech_model_name}.pth"
if not os.path.exists(ssrspeech_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn)
print(transcribe_model, align_model)
ckpt = torch.load(ssrspeech_fn)
model = ssr.SSR_Speech(ckpt["config"])
model.load_state_dict(ckpt["model"])
config = model.args
phn2num = ckpt["phn2num"]
model.to(device)
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
if not os.path.exists(encodec_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th -O " + encodec_fn)
ssrspeech_model = {
"config": config,
"phn2num": phn2num,
"model": model,
"text_tokenizer": text_tokenizer,
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
}
success_message = "<span style='color:green;'>Success: Models loading completed successfully!</span>"
return [
gr.Accordion(),
success_message
]
def get_transcribe_state(segments):
transcript = " ".join([segment["text"] for segment in segments])
transcript = transcript[1:] if transcript[0] == " " else transcript
return {
"segments": segments,
"transcript": transcript,
}
@spaces.GPU
def transcribe(audio_path):
global transcribe_model
if transcribe_model is None:
raise gr.Error("Transcription model not loaded")
segments = transcribe_model.transcribe(audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
return [
state["transcript"], state['segments'],
state, success_message
]
@spaces.GPU
def align(segments, audio_path):
global align_model
if align_model is None:
raise gr.Error("Align model not loaded")
segments = align_model.align(segments, audio_path)
state = get_transcribe_state(segments)
return state
def get_output_audio(audio_tensors, codec_audio_sr):
result = torch.cat(audio_tensors, 1)
buffer = io.BytesIO()
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
buffer.seek(0)
return buffer.read()
def replace_numbers_with_words(sentence):
sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers
def replace_with_words(match):
num = match.group(0)
try:
return num2words(num) # Convert numbers to words
except:
return num # In case num2words fails (unlikely with digits but just to be safe)
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
@spaces.GPU
def run(seed, sub_amount, ssrspeech_model_choice, codec_audio_sr, codec_sr, top_k, top_p, temperature,
stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef, prompt_length,
audio_path, original_transcript, transcript, mode):
global transcribe_model, align_model, ssrspeech_model
aug_text = True if aug_text == 1 else False
if ssrspeech_model is None:
raise gr.Error("ssrspeech model not loaded")
seed_everything(seed)
if ssrspeech_model_choice == "English":
language = "en"
elif ssrspeech_model_choice == "Mandarin":
language = "zh"
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _] = transcribe(audio_path)
if language == 'zh':
converter = opencc.OpenCC('t2s')
orig_transcript = converter.convert(orig_transcript)
transcribe_state = align(traditional_to_simplified(segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
elif language == 'en':
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state = align(segments, audio_path)
print(orig_transcript)
print(target_transcript)
if mode == "TTS":
info = torchaudio.info(audio_path)
duration = info.num_frames / info.sample_rate
cut_length = duration
# Cut long audio for tts
if duration > prompt_length:
seg_num = len(transcribe_state['segments'])
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
if item['end'] >= prompt_length:
cut_length = min(item['end'], cut_length)
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
sf.write(audio_path, audio, 16000)
[orig_transcript, segments, _] = transcribe(audio_path)
if language == 'zh':
converter = opencc.OpenCC('t2s')
orig_transcript = converter.convert(orig_transcript)
transcribe_state = align(traditional_to_simplified(segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
elif language == 'en':
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state = align(segments, audio_path)
print(orig_transcript)
target_transcript_copy = target_transcript # for tts cut out
if language == 'en':
target_transcript_copy = target_transcript_copy.split(' ')[0]
elif language == 'zh':
target_transcript_copy = target_transcript_copy[0]
target_transcript = orig_transcript + ' ' + target_transcript if language == 'en' else orig_transcript + target_transcript
print(target_transcript)
if mode == "Edit":
operations, orig_spans = parse_edit_en(orig_transcript, target_transcript) if language == 'en' else parse_edit_zh(orig_transcript, target_transcript)
print(operations)
print("orig_spans: ", orig_spans)
if len(orig_spans) > 3:
raise gr.Error("Current model only supports maximum 3 editings")
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
def combine_spans(spans, threshold=0.2):
spans.sort(key=lambda x: x[0])
combined_spans = []
current_span = spans[0]
for i in range(1, len(spans)):
next_span = spans[i]
if current_span[1] >= next_span[0] - threshold:
current_span[1] = max(current_span[1], next_span[1])
else:
combined_spans.append(current_span)
current_span = next_span
combined_spans.append(current_span)
return combined_spans
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
morphed_span = combine_spans(morphed_span, threshold=0.2)
print("morphed_spans: ", morphed_span)
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
else:
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
morphed_span = [(audio_dur, audio_dur)] # in seconds
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
print("mask_interval: ", mask_interval)
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
tts = True if mode == "TTS" else False
new_audio = inference_one_sample(
ssrspeech_model["model"],
ssrspeech_model["config"],
ssrspeech_model["phn2num"],
ssrspeech_model["text_tokenizer"],
ssrspeech_model["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, aug_text, False, True, tts,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
if tts: # remove the start parts
[new_transcript, new_segments, _] = transcribe(audio_path)
if language == 'zh':
transcribe_state = align(traditional_to_simplified(new_segments), audio_path)
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
tmp1 = transcribe_state['segments'][0]['words'][0]['word']
tmp2 = target_transcript_copy
elif language == 'en':
transcribe_state = align(new_segments, audio_path)
tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
tmp2 = target_transcript_copy.lower()
if tmp1 == tmp2:
offset = transcribe_state['segments'][0]['words'][0]['start']
else:
offset = transcribe_state['segments'][0]['words'][1]['start']
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
demo_original_transcript = "Gwynplaine had, besides, for his work and for his feats of strength, round his neck and over his shoulders, an esclavine of leather."
demo_text = {
"TTS": {
"regular": "Gwynplaine had, besides, for his work and for his feats of strength, I cannot believe that the same model can also do text to speech synthesis too!"
},
"Edit": {
"regular": "Gwynplaine had, besides, for his work and for his feats of strength, take over the stage for half an hour, an esclavine of leather."
},
}
def get_app():
with gr.Blocks() as app:
with gr.Row():
with gr.Column(scale=2):
load_models_btn = gr.Button(value="Load models")
with gr.Column(scale=5):
with gr.Accordion("Select models", open=False) as models_selector:
with gr.Row():
ssrspeech_model_choice = gr.Radio(label="ssrspeech model", value="English",
choices=["English", "Mandarin"])
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/5895_34622_000026_000002.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value=demo_text["Edit"]["regular"])
with gr.Row():
mode = gr.Radio(label="Mode", choices=["Edit", "TTS"], value="Edit")
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=2,
info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
info="set to 0 to use less VRAM, but with slower inference")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use cfg")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good")
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not change")
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, do not change')
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, do not change')
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
success_output = gr.HTML()
load_models_btn.click(fn=load_models,
inputs=[ssrspeech_model_choice],
outputs=[models_selector, success_output])
semgents = gr.State() # not used
transcribe_btn.click(fn=transcribe,
inputs=[input_audio],
outputs=[original_transcript, semgents, success_output])
run_btn.click(fn=run,
inputs=[
seed, sub_amount, ssrspeech_model_choice,
codec_audio_sr, codec_sr,
top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens,
aug_text, cfg_coef, prompt_length,
input_audio, original_transcript, transcript,
mode
],
outputs=[output_audio, success_output])
return app
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Ssrspeech gradio app.")
parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory")
parser.add_argument("--port", default=7860, type=int, help="App port")
parser.add_argument("--share", action="store_true", help="Launch with public url")
os.environ["USER"] = os.getenv("USER", "user")
args = parser.parse_args()
DEMO_PATH = args.demo_path
TMP_PATH = args.tmp_path
MODELS_PATH = args.models_path
app = get_app()
app.queue().launch(share=args.share, server_port=args.port)