Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer | |
# Set the model name and initialize the InferenceClient and tokenizer | |
model_name = "gpt2" # Replace with your model's name | |
client = InferenceClient(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Define a function to interact with the model | |
def chat_with_model(input_text): | |
# Tokenize the input text | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
# Send the request to the Hugging Face Inference API | |
result = client.text_generation( | |
inputs=inputs["input_ids"].tolist(), # Send tokenized input | |
parameters={"max_length": 150, "temperature": 1.0} | |
) | |
# Decode the generated text back to a readable format | |
response = tokenizer.decode(result[0]["generated_text"], skip_special_tokens=True) | |
return response | |
# Set up the Gradio interface | |
interface = gr.Interface( | |
fn=chat_with_model, | |
inputs=[gr.Textbox(lines=5, placeholder="Enter your text here...", label="Input Text")], | |
outputs=gr.Textbox(lines=5, label="Response"), | |
title="Hugging Face Chatbot", | |
description="A simple chatbot powered by Hugging Face and InferenceClient." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |