PierreJousselin commited on
Commit
66c9272
·
verified ·
1 Parent(s): 4df7568

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -59
app.py CHANGED
@@ -1,64 +1,37 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("PierreJousselin/lora_model")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer
4
+
5
+ # Set the model name and initialize the InferenceClient and tokenizer
6
+ model_name = "gpt2" # Replace with your model's name
7
+ client = InferenceClient(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Define a function to interact with the model
11
+ def chat_with_model(input_text):
12
+ # Tokenize the input text
13
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
14
+
15
+ # Send the request to the Hugging Face Inference API
16
+ result = client.text_generation(
17
+ inputs=inputs["input_ids"].tolist(), # Send tokenized input
18
+ parameters={"max_length": 150, "temperature": 1.0}
19
+ )
20
+
21
+ # Decode the generated text back to a readable format
22
+ response = tokenizer.decode(result[0]["generated_text"], skip_special_tokens=True)
23
+
24
+ return response
25
+
26
+ # Set up the Gradio interface
27
+ interface = gr.Interface(
28
+ fn=chat_with_model,
29
+ inputs=[gr.Textbox(lines=5, placeholder="Enter your text here...", label="Input Text")],
30
+ outputs=gr.Textbox(lines=5, label="Response"),
31
+ title="Hugging Face Chatbot",
32
+ description="A simple chatbot powered by Hugging Face and InferenceClient."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  )
34
 
35
+ # Launch the Gradio app
36
  if __name__ == "__main__":
37
+ interface.launch()