Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the fine-tuned model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model") | |
tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model") | |
# Define the text generation function | |
def generate_text(prompt): | |
# Encode the input prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate text using the model | |
generated_ids = model.generate( | |
input_ids, | |
max_length=150, # Maximum length of the generated text | |
num_return_sequences=1, # Number of sequences to generate | |
temperature=0.7, # Sampling temperature (controls randomness) | |
top_p=0.9, # Nucleus sampling (controls diversity) | |
top_k=50, # Top-k sampling (limits the number of next word candidates) | |
no_repeat_ngram_size=2, # Avoid repeating n-grams | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_text | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, # The function to call when the user provides input | |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # Input box | |
outputs=gr.Textbox(), # Output box to display the generated text | |
title="Lora Fine-Tuned Language Model", # Interface title | |
description="This is a Gradio interface for the Lora fine-tuned language model. Enter a prompt to generate text.", # Description | |
) | |
# Launch the interface | |
iface.launch() | |