LAB_LLM / app.py
PierreJousselin's picture
Update app.py
7dfe107 verified
raw
history blame
1.6 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model")
tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model")
# Define the text generation function
def generate_text(prompt):
# Encode the input prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate text using the model
generated_ids = model.generate(
input_ids,
max_length=150, # Maximum length of the generated text
num_return_sequences=1, # Number of sequences to generate
temperature=0.7, # Sampling temperature (controls randomness)
top_p=0.9, # Nucleus sampling (controls diversity)
top_k=50, # Top-k sampling (limits the number of next word candidates)
no_repeat_ngram_size=2, # Avoid repeating n-grams
)
# Decode the generated text
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_text
# Create the Gradio interface
iface = gr.Interface(
fn=generate_text, # The function to call when the user provides input
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # Input box
outputs=gr.Textbox(), # Output box to display the generated text
title="Lora Fine-Tuned Language Model", # Interface title
description="This is a Gradio interface for the Lora fine-tuned language model. Enter a prompt to generate text.", # Description
)
# Launch the interface
iface.launch()