Spaces:
Sleeping
Sleeping
import datetime | |
import pandas as pd | |
import os | |
from entsoe import EntsoePandasClient | |
from pymongo.mongo_client import MongoClient | |
from pymongo.server_api import ServerApi | |
entsoe_api_key = "22cb6d0f-5368-4495-95b0-3856c4bb6f7b" | |
mongo_password= "aIdg0yUMUaZHyVN7" | |
client = EntsoePandasClient(api_key=entsoe_api_key) | |
country_code = "SE_3" | |
energy_load_data = pd.DataFrame() | |
start_date = pd.Timestamp( | |
datetime.datetime.now() + datetime.timedelta(days=-2), tz="Europe/Berlin" | |
) | |
end_date = pd.Timestamp( | |
datetime.datetime.now() + datetime.timedelta(days=1), tz="Europe/Berlin" | |
) | |
load = client.query_load(country_code, start=start_date, end=end_date) | |
if load is not None and not load.empty: | |
# Resample hourly data to daily averages | |
daily_load = load.resample("D").mean() | |
daily_load = daily_load.reset_index() | |
daily_load.columns = ["date", "load"] | |
# Append to the main DataFrame | |
energy_load_data = pd.concat([energy_load_data, daily_load], axis=0) | |
energy_load_data['country_code']=country_code | |
energy_load_data['date'] = pd.to_datetime(energy_load_data['date'], format='%Y-%m-%d') | |
energy_load_data['date'] = pd.to_datetime(energy_load_data['date']).dt.date | |
energy_load_data['date'] = pd.to_datetime(energy_load_data['date']) | |
energy_load_data = energy_load_data.iloc[[-1]] | |
uri = "mongodb+srv://pgmjo:"+mongo_password+"@cluster0.noq3s.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0" | |
# Create a new client and connect to the server | |
client = MongoClient(uri) | |
db = client["daily_energy_load"] # Replace 'mydatabase' with your database name | |
collection = db["S3"] # Replace 'mycollection' with your collection name | |
data_dict = energy_load_data.to_dict("records") | |
# Insérer dans la collection MongoDB | |
result = collection.insert_many(data_dict) |