|
import os.path |
|
from data.base_dataset import BaseDataset, get_params, get_transform |
|
from PIL import Image |
|
import linecache |
|
|
|
class AlignedDataset(BaseDataset): |
|
def initialize(self, opt): |
|
self.opt = opt |
|
self.root = opt.dataroot |
|
|
|
self.fine_height=256 |
|
self.fine_width=192 |
|
|
|
self.dataset_size = len(open('demo.txt').readlines()) |
|
|
|
dir_I = '_img' |
|
self.dir_I = os.path.join(opt.dataroot, opt.phase + dir_I) |
|
|
|
dir_C = '_clothes' |
|
self.dir_C = os.path.join(opt.dataroot, opt.phase + dir_C) |
|
|
|
dir_E = '_edge' |
|
self.dir_E = os.path.join(opt.dataroot, opt.phase + dir_E) |
|
|
|
def __getitem__(self, index): |
|
|
|
file_path ='demo.txt' |
|
im_name, c_name = linecache.getline(file_path, index+1).strip().split() |
|
|
|
I_path = os.path.join(self.dir_I,im_name) |
|
I = Image.open(I_path).convert('RGB') |
|
|
|
I = I.resize((self.fine_width, self.fine_height)) |
|
|
|
params = get_params(self.opt, I.size) |
|
transform = get_transform(self.opt, params) |
|
transform_E = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) |
|
|
|
I_tensor = transform(I) |
|
|
|
C_path = os.path.join(self.dir_C,c_name) |
|
C = Image.open(C_path).convert('RGB') |
|
C_tensor = transform(C) |
|
|
|
E_path = os.path.join(self.dir_E,c_name) |
|
E = Image.open(E_path).convert('L') |
|
E_tensor = transform_E(E) |
|
|
|
input_dict = { 'image': I_tensor,'clothes': C_tensor, 'edge': E_tensor} |
|
return input_dict |
|
|
|
def __len__(self): |
|
return self.dataset_size |
|
|
|
def name(self): |
|
return 'AlignedDataset' |
|
|