Kimata commited on
Commit
08bb20e
·
1 Parent(s): 74bc616

last changes, hopefully!

Browse files
.gitattributes CHANGED
@@ -1,6 +1,3 @@
1
- <<<<<<< HEAD
2
- checkpoints/model_best.pt filter=lfs diff=lfs merge=lfs -text
3
- =======
4
  *.7z filter=lfs diff=lfs merge=lfs -text
5
  *.arrow filter=lfs diff=lfs merge=lfs -text
6
  *.bin filter=lfs diff=lfs merge=lfs -text
@@ -36,5 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  *.zip filter=lfs diff=lfs merge=lfs -text
37
  *.zst filter=lfs diff=lfs merge=lfs -text
38
  *tfevents* filter=lfs diff=lfs merge=lfs -text
39
- >>>>>>> 10b34e9e01a793df83cca1499ece5c6b29f10a90
40
  checkpoints/model.pth filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
36
  checkpoints/model.pth filter=lfs diff=lfs merge=lfs -text
37
+ checkpoints/efficientnet.onnx filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ checkpoints/efficientnet.onnx
2
+ checkpoints/RawNet2.pth
__pycache__/inference_2.cpython-39.pyc CHANGED
Binary files a/__pycache__/inference_2.cpython-39.pyc and b/__pycache__/inference_2.cpython-39.pyc differ
 
checkpoints/model.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd7e7092a26ba6b2927a05150d25f03fb19e4562006835cfa585a055b419f2f2
3
- size 604878654
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de812710093068acee6200b8d162aab074975edffa3edf2ccbe562868e4adf6
3
+ size 117418889
inference_2.py CHANGED
@@ -1,5 +1,6 @@
1
  import os
2
  import cv2
 
3
  import torch
4
  import argparse
5
  import numpy as np
@@ -7,6 +8,11 @@ import torch.nn as nn
7
  from models.TMC import ETMC
8
  from models import image
9
 
 
 
 
 
 
10
  #Set random seed for reproducibility.
11
  torch.manual_seed(42)
12
 
@@ -70,28 +76,29 @@ def load_multimodal_model(args):
70
  '''Load multimodal model'''
71
  model = ETMC(args)
72
  ckpt = torch.load('checkpoints\\model.pth', map_location = torch.device('cpu'))
73
- model.load_state_dict(ckpt,strict = True)
74
  model.eval()
75
  return model
76
 
77
  def load_img_modality_model(args):
78
  '''Loads image modality model.'''
79
- rgb_encoder = image.ImageEncoder(args)
80
- ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
81
- rgb_encoder.load_state_dict(ckpt, strict = False)
 
82
  rgb_encoder.eval()
83
  return rgb_encoder
84
 
85
  def load_spec_modality_model(args):
86
  spec_encoder = image.RawNet(args)
87
  ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
88
- spec_encoder.load_state_dict(ckpt, strict = False)
89
  spec_encoder.eval()
90
  return spec_encoder
91
 
92
 
93
  #Load models.
94
- parser = argparse.ArgumentParser(description="Train Models")
95
  get_args(parser)
96
  args, remaining_args = parser.parse_known_args()
97
  assert remaining_args == [], remaining_args
@@ -104,7 +111,7 @@ img_model = load_img_modality_model(args)
104
  def preprocess_img(face):
105
  face = face / 255
106
  face = cv2.resize(face, (256, 256))
107
- face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
108
  face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
109
  return face_pt
110
 
@@ -137,18 +144,18 @@ def deepfakes_spec_predict(input_audio):
137
 
138
  def deepfakes_image_predict(input_image):
139
  face = preprocess_img(input_image)
140
-
141
  img_grads = img_model.forward(face)
142
  img_grads = img_grads.cpu().detach().numpy()
143
  img_grads_np = np.squeeze(img_grads)
144
 
145
- if img_grads_np > 0.5:
146
- preds = round(100 - (img_grads_np * 100), 3)
147
- text2 = f"The image is REAL."
148
 
149
  else:
150
- preds = round(img_grads_np * 100, 3)
151
- text2 = f"The image is FAKE."
152
 
153
  return text2
154
 
@@ -182,7 +189,8 @@ def preprocess_video(input_video, n_frames = 3):
182
  def deepfakes_video_predict(input_video):
183
  '''Perform inference on a video.'''
184
  video_frames = preprocess_video(input_video)
185
- grads_list = []
 
186
 
187
  for face in video_frames:
188
  # face = preprocess_img(face)
@@ -190,15 +198,19 @@ def deepfakes_video_predict(input_video):
190
  img_grads = img_model.forward(face)
191
  img_grads = img_grads.cpu().detach().numpy()
192
  img_grads_np = np.squeeze(img_grads)
193
- grads_list.append(img_grads_np)
 
 
 
 
194
 
195
- grads_list_mean = np.mean(grads_list)
 
 
196
 
197
- if grads_list_mean > 0.5:
198
- res = round(grads_list_mean * 100, 3)
199
- text = f"The video is REAL."
200
  else:
201
- res = round(100 - (grads_list_mean * 100), 3)
202
- text = f"The video is FAKE."
203
- return text
 
204
 
 
1
  import os
2
  import cv2
3
+ import onnx
4
  import torch
5
  import argparse
6
  import numpy as np
 
8
  from models.TMC import ETMC
9
  from models import image
10
 
11
+ from onnx2pytorch import ConvertModel
12
+
13
+ onnx_model = onnx.load('checkpoints\\efficientnet.onnx')
14
+ pytorch_model = ConvertModel(onnx_model)
15
+
16
  #Set random seed for reproducibility.
17
  torch.manual_seed(42)
18
 
 
76
  '''Load multimodal model'''
77
  model = ETMC(args)
78
  ckpt = torch.load('checkpoints\\model.pth', map_location = torch.device('cpu'))
79
+ model.load_state_dict(ckpt, strict = True)
80
  model.eval()
81
  return model
82
 
83
  def load_img_modality_model(args):
84
  '''Loads image modality model.'''
85
+ rgb_encoder = pytorch_model
86
+
87
+ ckpt = torch.load('checkpoints\\model.pth', map_location = torch.device('cpu'))
88
+ rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
89
  rgb_encoder.eval()
90
  return rgb_encoder
91
 
92
  def load_spec_modality_model(args):
93
  spec_encoder = image.RawNet(args)
94
  ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
95
+ spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
96
  spec_encoder.eval()
97
  return spec_encoder
98
 
99
 
100
  #Load models.
101
+ parser = argparse.ArgumentParser(description="Inference models")
102
  get_args(parser)
103
  args, remaining_args = parser.parse_known_args()
104
  assert remaining_args == [], remaining_args
 
111
  def preprocess_img(face):
112
  face = face / 255
113
  face = cv2.resize(face, (256, 256))
114
+ # face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
115
  face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
116
  return face_pt
117
 
 
144
 
145
  def deepfakes_image_predict(input_image):
146
  face = preprocess_img(input_image)
147
+ print(f"Face shape is: {face.shape}")
148
  img_grads = img_model.forward(face)
149
  img_grads = img_grads.cpu().detach().numpy()
150
  img_grads_np = np.squeeze(img_grads)
151
 
152
+ if img_grads_np[0] > 0.5:
153
+ preds = round(img_grads_np[0] * 100, 3)
154
+ text2 = f"The image is REAL. \nConfidence score is: {preds}"
155
 
156
  else:
157
+ preds = round(img_grads_np[1] * 100, 3)
158
+ text2 = f"The image is FAKE. \nConfidence score is: {preds}"
159
 
160
  return text2
161
 
 
189
  def deepfakes_video_predict(input_video):
190
  '''Perform inference on a video.'''
191
  video_frames = preprocess_video(input_video)
192
+ real_faces_list = []
193
+ fake_faces_list = []
194
 
195
  for face in video_frames:
196
  # face = preprocess_img(face)
 
198
  img_grads = img_model.forward(face)
199
  img_grads = img_grads.cpu().detach().numpy()
200
  img_grads_np = np.squeeze(img_grads)
201
+ real_faces_list.append(img_grads_np[0])
202
+ fake_faces_list.append(img_grads_np[1])
203
+
204
+ real_faces_mean = np.mean(real_faces_list)
205
+ fake_faces_mean = np.mean(fake_faces_list)
206
 
207
+ if real_faces_mean > 0.5:
208
+ preds = round(real_faces_mean * 100, 3)
209
+ text2 = f"The video is REAL. \nConfidence score is: {preds}%"
210
 
 
 
 
211
  else:
212
+ preds = round(fake_faces_mean * 100, 3)
213
+ text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
214
+
215
+ return text2
216
 
checkpoints/model_best.pt → model.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:545246c0330351105d0197ce443163bbc35016167feff0afe64770670bb0ee09
3
- size 632423929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7124691a506c8b7ea6baf3284a2b52f58879d3de89a8154d5ad3f69ba744912a
3
+ size 152905281
requirements.txt CHANGED
@@ -7,4 +7,6 @@ librosa
7
  ffmpeg
8
  albumentations
9
  opencv-python
10
- torchsummary
 
 
 
7
  ffmpeg
8
  albumentations
9
  opencv-python
10
+ torchsummary
11
+ onnx
12
+ onnx2pytorch
save_ckpts.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import onnx
2
+ import torch
3
+ import argparse
4
+ import numpy as np
5
+ import torch.nn as nn
6
+ from models.TMC import ETMC
7
+ from models import image
8
+ from onnx2pytorch import ConvertModel
9
+
10
+ onnx_model = onnx.load('checkpoints\\efficientnet.onnx')
11
+ pytorch_model = ConvertModel(onnx_model)
12
+
13
+ # Define the audio_args dictionary
14
+ audio_args = {
15
+ 'nb_samp': 64600,
16
+ 'first_conv': 1024,
17
+ 'in_channels': 1,
18
+ 'filts': [20, [20, 20], [20, 128], [128, 128]],
19
+ 'blocks': [2, 4],
20
+ 'nb_fc_node': 1024,
21
+ 'gru_node': 1024,
22
+ 'nb_gru_layer': 3,
23
+ 'nb_classes': 2
24
+ }
25
+
26
+
27
+ def get_args(parser):
28
+ parser.add_argument("--batch_size", type=int, default=8)
29
+ parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
30
+ parser.add_argument("--LOAD_SIZE", type=int, default=256)
31
+ parser.add_argument("--FINE_SIZE", type=int, default=224)
32
+ parser.add_argument("--dropout", type=float, default=0.2)
33
+ parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
34
+ parser.add_argument("--hidden", nargs="*", type=int, default=[])
35
+ parser.add_argument("--hidden_sz", type=int, default=768)
36
+ parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
37
+ parser.add_argument("--img_hidden_sz", type=int, default=1024)
38
+ parser.add_argument("--include_bn", type=int, default=True)
39
+ parser.add_argument("--lr", type=float, default=1e-4)
40
+ parser.add_argument("--lr_factor", type=float, default=0.3)
41
+ parser.add_argument("--lr_patience", type=int, default=10)
42
+ parser.add_argument("--max_epochs", type=int, default=500)
43
+ parser.add_argument("--n_workers", type=int, default=12)
44
+ parser.add_argument("--name", type=str, default="MMDF")
45
+ parser.add_argument("--num_image_embeds", type=int, default=1)
46
+ parser.add_argument("--patience", type=int, default=20)
47
+ parser.add_argument("--savedir", type=str, default="./savepath/")
48
+ parser.add_argument("--seed", type=int, default=1)
49
+ parser.add_argument("--n_classes", type=int, default=2)
50
+ parser.add_argument("--annealing_epoch", type=int, default=10)
51
+ parser.add_argument("--device", type=str, default='cpu')
52
+ parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
53
+ parser.add_argument("--freeze_image_encoder", type=bool, default = False)
54
+ parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
55
+ parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
56
+ parser.add_argument("--augment_dataset", type = bool, default = True)
57
+
58
+ for key, value in audio_args.items():
59
+ parser.add_argument(f"--{key}", type=type(value), default=value)
60
+
61
+ def load_spec_modality_model(args):
62
+ spec_encoder = image.RawNet(args)
63
+ ckpt = torch.load('checkpoints\RawNet2.pth', map_location = torch.device('cpu'))
64
+ spec_encoder.load_state_dict(ckpt, strict = True)
65
+ spec_encoder.eval()
66
+ return spec_encoder
67
+
68
+
69
+ #Load models.
70
+ parser = argparse.ArgumentParser(description="Train Models")
71
+ get_args(parser)
72
+ args, remaining_args = parser.parse_known_args()
73
+ assert remaining_args == [], remaining_args
74
+
75
+ spec_model = load_spec_modality_model(args)
76
+
77
+ print(f"Image model is: {pytorch_model}")
78
+
79
+ print(f"Audio model is: {spec_model}")
80
+
81
+
82
+ PATH = 'checkpoints\\model.pth'
83
+
84
+ torch.save({
85
+ 'spec_encoder': spec_model.state_dict(),
86
+ 'rgb_encoder': pytorch_model.state_dict()
87
+ }, PATH)
88
+
89
+ print("Model saved.")