File size: 7,960 Bytes
e43847e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b56e6
 
 
e43847e
08b56e6
 
e43847e
08b56e6
e43847e
08b56e6
 
 
 
e43847e
 
08b56e6
 
 
 
 
 
 
 
 
e43847e
08b56e6
e43847e
 
08b56e6
 
 
 
e43847e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b56e6
 
 
 
 
 
 
e43847e
08b56e6
e43847e
08b56e6
e43847e
 
 
 
 
08b56e6
e43847e
 
 
 
08b56e6
e43847e
 
 
08b56e6
e43847e
 
08b56e6
e43847e
08b56e6
 
 
 
 
e43847e
08b56e6
 
 
 
e43847e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
from PIL import Image
from dataclasses import dataclass
import random
from transformers import pipeline
from huggingface_hub import InferenceClient, login
import os
from datetime import datetime

@dataclass
class PatientMetadata:
    age: int
    smoking_status: str
    family_history: bool
    menopause_status: str
    previous_mammogram: bool
    breast_density: str
    hormone_therapy: bool

class MicrowaveBreastAnalyzer:
    def __init__(self, hf_token: str):
        """Initialize the analyzer with models."""
        print("Initializing system...")
        
        # Login to Hugging Face
        login(token=hf_token)
        
        # Initialize vision pipelines for tumor detection and size classification
        self.tumor_classifier = pipeline(
            "image-classification",
            model="SIATCN/vit_tumor_classifier",
            device="cpu"
        )
        
        self.size_classifier = pipeline(
            "image-classification",
            model="SIATCN/vit_tumor_radius_detection_finetuned",
            device="cpu"
        )
        
        # Initialize Mistral client for report generation
        self.report_generator = InferenceClient(
            model="mistralai/Mixtral-8x7B-Instruct-v0.1",
            token=hf_token
        )
        
        print("Initialization complete!")

    def _generate_synthetic_metadata(self) -> PatientMetadata:
        """Generate realistic patient metadata for screening."""
        age = random.randint(40, 75)
        smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
        family_history = random.choice([True, False])
        menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
        previous_mammogram = random.choice([True, False])
        breast_density = random.choice([
            "A: Almost entirely fatty", 
            "B: Scattered fibroglandular",
            "C: Heterogeneously dense",
            "D: Extremely dense"
        ])
        hormone_therapy = random.choice([True, False])

        return PatientMetadata(
            age=age,
            smoking_status=smoking_status,
            family_history=family_history,
            menopause_status=menopause_status,
            previous_mammogram=previous_mammogram,
            breast_density=breast_density,
            hormone_therapy=hormone_therapy
        )

    def _process_image(self, image: Image.Image) -> Image.Image:
        """Process input image for model consumption."""
        if image.mode != 'RGB':
            image = image.convert('RGB')
        return image.resize((224, 224))

    def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
        """Generate a standardized report for microwave breast imaging."""
        prompt = f"""<s>[INST] Generate a structured medical report for a microwave breast imaging scan using the following format exactly.
Keep sections consistent and use proper medical terminology. Be concise yet thorough.

EXAMINATION PERFORMED:
- Microwave Breast Imaging Scan
- Date: {datetime.now().strftime('%B %d, %Y')}

IMAGING FINDINGS:
Primary Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'}
{f'Detected Mass Size: {tumor_size} cm' if has_tumor else ''}

PATIENT HISTORY:
- Age: {metadata.age} years
- Menopausal Status: {metadata.menopause_status}
- Previous Screening: {'Yes' if metadata.previous_mammogram else 'No'}
- Tissue Characteristics: {metadata.breast_density}

RISK FACTORS:
{f'• Family History: {"Present" if metadata.family_history else "None"}'}
• Smoking Status: {metadata.smoking_status}
• Hormone Therapy: {'Yes' if metadata.hormone_therapy else 'No'}

Please generate a report with these exact sections:

1. DETAILED FINDINGS
[Describe the microwave imaging findings in detail, including location and characteristics of any detected abnormalities]

2. INTERPRETATION
[Provide a clear assessment of the microwave imaging results and their clinical significance]

3. RECOMMENDATIONS
[List specific follow-up actions and timeline]

4. TECHNICAL NOTES
[Include any relevant information about the scan quality and any technical considerations]

Format each section consistently and maintain professional medical terminology throughout. Note that this uses microwave imaging technology, not mammography. [/INST]</s>"""

        # Generate response using Mistral
        response = self.report_generator.text_generation(
            prompt,
            max_new_tokens=800,
            temperature=0.3,
            top_p=0.9,
            repetition_penalty=1.1,
            do_sample=True,
            seed=42
        )
            
        # Post-process the response to ensure consistent formatting
        formatted_response = f"""MICROWAVE BREAST IMAGING REPORT
Date: {datetime.now().strftime('%B %d, %Y')}
----------------------------------------

{response.strip()}

----------------------------------------
NOTE: This report was generated using AI assistance and should be reviewed by a qualified healthcare professional.
This screening was performed using microwave imaging technology."""

        return formatted_response

    def analyze(self, image: Image.Image) -> str:
        """Main analysis pipeline with standardized output."""
        try:
            processed_image = self._process_image(image)
            metadata = self._generate_synthetic_metadata()

            # Detect tumor
            tumor_result = self.tumor_classifier(processed_image)
            has_tumor = tumor_result[0]['label'] == 'tumor'
            tumor_confidence = tumor_result[0]['score']

            # Measure size if tumor detected
            size_result = self.size_classifier(processed_image)
            tumor_size = size_result[0]['label'].replace('tumor-', '')

            # Generate report
            report = self._generate_medical_report(has_tumor, tumor_size, metadata)

            return f"""MICROWAVE BREAST IMAGING ANALYSIS
========================================

INITIAL SCAN ASSESSMENT:
{'⚠️ ABNORMAL FINDING DETECTED' if has_tumor else '✓ NO ABNORMALITIES DETECTED'}
Detection Confidence: {tumor_confidence:.2%}
{f'Estimated Mass Size: {tumor_size} cm' if has_tumor else ''}

----------------------------------------
{report}"""

        except Exception as e:
            import traceback
            return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"

def create_interface(hf_token: str) -> gr.Interface:
    """Create the Gradio interface."""
    analyzer = MicrowaveBreastAnalyzer(hf_token)
    
    interface = gr.Interface(
        fn=analyzer.analyze,
        inputs=[
            gr.Image(type="pil", label="Upload Microwave Breast Image for Analysis")
        ],
        outputs=[
            gr.Textbox(label="Analysis Results", lines=20)
        ],
        title="Microwave Breast Imaging Analysis System",
        description="""Upload a microwave breast image for comprehensive analysis. The system will:
        1. Detect the presence of tumors using microwave imaging technology
        2. Classify tumor size if present
        3. Generate a detailed medical report with recommendations
        
        Note: This system uses microwave imaging technology for breast screening, which offers a safe, 
        radiation-free alternative to traditional mammography.""",
    )
    
    return interface

if __name__ == "__main__":
    print("Starting microwave breast imaging analysis system...")
    # Load HuggingFace token from secrets
    HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
    if not HF_TOKEN:
        raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
        
    interface = create_interface(HF_TOKEN)
    # Modified launch parameters for Spaces
    interface.launch(
        debug=True,
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )