Spaces:
Runtime error
Runtime error
File size: 2,083 Bytes
bb7e9b2 3cce55d bb7e9b2 3cce55d bb7e9b2 a20ade5 bb7e9b2 3cce55d bb7e9b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
app_title = "Football Object Detection"
models_ids = ['keremberke/yolov5n-football', 'keremberke/yolov5s-football', 'keremberke/yolov5m-football']
article = f"<p style='text-align: center'> <a href='https://huggingface.co/{models_ids[-1]}'>huggingface.co/{models_ids[-1]}</a> | <a href='https://huggingface.co/keremberke/football-object-detection'>huggingface.co/keremberke/football-object-detection</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>"
# Set default model_id here
default_model_id = models_ids[-1]
current_model_id = default_model_id
model = yolov5.load(current_model_id)
examples = [['test_images/18_pp_jpg.rf.912a54e24d38371daf61114b9a6b18be.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/54881_jpg.rf.62b337bc47dbf6fbf5a34e18a361de97.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/55219_jpg.rf.cdfe02a50951cf1ad449e940fbb646ac.jpg', 0.25, 'keremberke/yolov5m-football']]
def predict(image, threshold=0.25, model_id=default_model_id):
# update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
# perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="Created by ''",
article=article,
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25)
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else False,
).launch(enable_queue=True)
|